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metrics confirmed the existence of several abnormal net-
work features in both affected groups. Significant associa-
tions of connectivity with symptoms were also observed. In 
the ADHD group, temporal variability of functional connec-
tions was associated with executive function and memory 
deficits. Depression, hyperactivity and impulsivity levels in 
the ADHD group were associated with abnormal intrinsic 
connectivity. In the BD group, levels of anxiety and depres-
sion were related to abnormal frontotemporal connectivity. 
 Conclusions:  In the ADHD group, we found that intrinsic 
variability was associated with deficits in cognitive perfor-
mance and that connectivity abnormalities were related to 
ADHD symptomatology. The BD group exhibited less intrin-
sic variability and more diffuse long-range brain connec-
tions, and those abnormalities were related to interindivid-
ual differences in depression and anxiety. These preliminary 
results are relevant for neurocognitive models of abnormal 
brain connectivity in both disorders.  © 2014 S. Karger AG, Basel 
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 Abstract 

  Objectives:  To assess brain functional connectivity and vari-
ability in adults with attention deficit/hyperactivity disorder 
(ADHD) or euthymic bipolar disorder (BD) relative to a con-
trol (CT) group.  Methods:  Electroencephalography (EEG) 
was measured in 35 participants (BD = 11; ADHD = 9; CT = 
15) during an eyes-closed 10-min rest period, and connectiv-
ity and graph theory metrics were computed. A coefficient 
of variation (CV) computed also the connectivity’s temporal 
variability of EEG. Multivariate associations between func-
tional connectivity and clinical and neuropsychological pro-
files were evaluated.  Results:  An enhancement of functional 
connectivity was observed in the ADHD (fronto-occipital 
connections) and BD (diffuse connections) groups. However, 
compared with CTs, intrinsic variability (CV) was enhanced in 
the ADHD group and reduced in the BD group. Graph theory 

 Received: March 1, 2013 
 Accepted after revision: December 19, 2013 
 Published online: February 27, 2014 

 Agustín Ibañez, PhD  
 Laboratory of Experimental Psychology and Neuroscience  
 Institute of Cognitive Neurology, CONICET  
 Pacheco de Melo 1860, Buenos Aires (Argentina) 
 E-Mail aibanez   @   neurologiacognitiva.org 

 © 2014 S. Karger AG, Basel
0302–282X/14/0692–0065$39.50/0 

 www.karger.com/nps 

 Pablo Barttfeld and Agustín Petroni are both considered first authors. 

D
ow

nl
oa

de
d 

by
: 

IN
S

E
R

M
 D

IS
C

 IS
T

19
3.

54
.1

10
.3

3 
- 

3/
4/

20
14

 1
0:

22
:3

6 
A

M

http://dx.doi.org/10.1159%2F000356964


 Barttfeld    et al.  Neuropsychobiology  2014;69:65–75
DOI: 10.1159/000356964

66

 Introduction  

 The frequent co-occurrence of bipolar disorder (BD) 
and attention deficit/hyperactivity disorder (ADHD) in 
adults usually manifests itself as shared clinical symptoms 
 [1–3]  and similar cognitive impairments  [4–6] . It is there-
fore an important scientific and medical challenge to de-
velop novel physiological markers to thoroughly differ-
entiate these disorders from one another. The spontane-
ous patterns of brain networks at low-frequency coherence 
are characteristic of cognition during rest and are ob-
served (but not restricted to) the so-called default mode 
network (DMN)  [7, 8] . These spontaneous levels of activ-
ity decrease during active, task-specific processing that 
requires engagement of the executive attention system  [9, 
10] . Abnormal connectivity might therefore be a relevant 
underlying mechanism of several neuropsychiatric con-
ditions  [11] , including ADHD and BD. Here, we com-
pared the functional connectivity and variability as well 
as their relation with clinical symptoms in adults with 
ADHD, euthymic BD and a control (CT) group. 

  Recent reports, including neuroimaging and electro-
encephalography (EEG) methods, have suggested the 
presence of abnormal brain connectivity in ADHD [for 
reviews, see  12–14] . Moreover, the DMN hypothesis for-
mulated by Sonuga-Barke and Castellanos  [13]  proposed 
that DMN variability and interference explain ADHD 
performance variability. Several studies of functional 
brain activity  [15, 16] , metabolic stress markers  [17, 18]  
and EEG  [19–21]  suggest the existence of abnormal con-
nectivity in BD. Impaired frontal connectivity  [22]  and an 
abnormal DMN  [23]  have been observed during manic 
stages of BD. It has been suggested that changes triggered 
by the oscillation between mania and depression might 
affect brain connectivity and the neurocognitive profile 
in BD  [18] . However, the organization of the brain con-
nectivity during euthymic stages remains unexplored. 
Moreover, while the previous literature suggests the pos-
sibility of connectivity dysfunction in both BD and 
ADHD, no studies have directly assessed those groups. 

  The goal of this work is to fill this gap in the literature, 
assessing EEG connectivity in adult ADHD, in a sample 
of euthymic BD and in matched CT. The EEG-DMN of 
spectral field powers at rest presents delta prefrontal ac-
tivation with great expansion of spatial field and enhance-
ment of field power  [24] . Moreover, combined EEG/
functional MRI recordings have found higher partial cor-
relations of DMN (functional MRI) to delta EEG activity 
than other frequency bands  [25] . Consistently, we mea-
sured functional brain networks in the delta band, mea-

suring coherence in raw filtered signals  [26, 27] . To inves-
tigate which specific neuropsychological variables affect 
the topology of connectivity, we performed a multivariate 
analysis of clinical and neuropsychological evaluations 
on different properties of the DMN in patients and in a 
control population.

  Materials and Methods  

 Participants  
 Thirty-five participants (BD = 11; ADHD = 9; CT = 15) re-

cruited from a broad ongoing project  [4, 5, 28–32]  received clini-
cal, neurocognitive and EEG assessments (see  table 1  for demo-
graphic details). All participants provided written informed con-
sent in agreement with the Helsinki declaration. Clinical, 
symptomatic and neuropsychological assessment is described in 
the supplementary section (for all online suppl. material, see www.
karger.com/doi/10.1159/000356964).

  EEG Recordings  
 Ten-minute resting-state EEGs were recorded with a Biosemi 

ActiveTwo 128-channel, 24-bit resolution system with active elec-
trodes. Signals were digitized at 512 Hz and were low-passed DC-
1/5th of the sample rate (–3 dB). Two bipolar derivations moni-
tored vertical and horizontal ocular movements (electro-oculog-
raphy). After this acquisition, signals were re-referenced to the 
average of all electrodes and were filtered on the delta band (0.5–
3.5 Hz, approx. 60 dB/decade roll-off). We removed all segments 
with eye movement artifacts from analysis using an automatic and 
visual procedure provided in EEGLAB  [33] .

  Data Analysis  
 ANOVAs, χ 2  tests and Tukey’s HSD post hoc comparisons 

(when appropriate) were conducted to compare demographic and 
neuropsychological data across all three groups. Synchronization 
between all pairwise combinations of EEG channels was computed 
for all subjects with the synchronization likelihood (SL) method 
 [34] . All of the details of the connectivity analysis can be found 
elsewhere  [34] . For each participant in this study, we calculated SL 
across all pairs of channels. This analysis collapsed the stationary 
EEG data of each participant, band passed in the delta range, to a 
128 × 128 synchronization matrix (henceforth referred to as an SL 
matrix). This connectivity matrix produces a weighted graph in 
which each electrode corresponds to a node and each link is deter-
mined by the SL of an electrode pair. To calculate network mea-
sures, SL matrices were converted to binary undirected matrices 
by applying a threshold T. We explored a broad range of values of 
0.01 < T < 0.2, with increments of 0.0005, and we repeated the full 
analysis for each value of T. Based on previous works  [35–40] , 
graph theory metrics  [41]  were performed on these thresholded 
matrices, measuring the clustering coefficient C, the characteristic 
path length L and the modularity index MI of brain networks, us-
ing the BCT toolbox  [41] . Finally, we performed ANOVAs with 
group (CT or patients) and T (binned in 8) as independent factors. 
The degree K represents the number of connections of each node 
in the network. To build the K maps, we thresholded the SL matrix 
at several increasing thresholds to obtain adjacency matrices (i.e. 
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a matrix with 1 where a connection is present and 0 where a con-
nection is not present).

  The temporal variability for the connection of each electrode 
pair was defined as the coefficient of variation (CV) of the SL 
values along the entire 10-min session. A 128 × 128 CV matrix 
(obtained as the SL matrix) was used for exploring a range of 
variability values. SL analysis yields a 3-dimensional matrix, 
sized 128 × 128 × N, with N being the number of time point 
resolutions depending on the chosen parameters (in our data, N 
varied tightly around 2,000). To obtain the CV matrix, we calcu-
lated the CV of each connection along this third dimension, ob-
taining a 128 × 128 matrix reflecting the intrinsic variability of 
the SL between each pair of channels, normalized by their mean 
connectivity value.

  To explore possible associations between functional connectiv-
ity and clinical measures, we calculated linear correlations between 
SL values in each pair of electrodes and clinical (anxiety, depres-
sion, hyperactivity and impulsivity) as well as neuropsychological 
(executive function and memory) scores. To quantify these obser-
vations in a statistical manner, we focused on fronto-occipital in-

teractions, defining two regions of interest: frontal (covering most 
frontal and frontolateral electrodes) and occipital (covering oc-
cipitocentral electrodes). We then measured global connectivity 
across regions (including the connectivity of a region with itself), 
to perform ANOVA tests.

  Results  

 Demographic, Clinical and Neuropsychological 
Assessment 
  Table 1  shows the overall results from the demograph-

ic, clinical, and neuropsychological assessments. The 
groups did not differ significantly in age, gender, handed-
ness or educational level. Clinical evaluation and neuro-
psychological assessment results can be found in the on-
line supplementary material.

Table 1.  Demographic, clinical and neurocognitive assessments

BD
(n = 11)

ADHD
(n = 9)

CT
(n = 15)

BD vs.
ADHD

BD vs.
CT

ADHD vs.
CT

Demographics Age, years 45.3 (11.4) 33.2 (11.3) 38.0 (12.0) N.S N.S N.S
Gender (F/M) 6/5 1/8 4/11 N.S N.S N.S
Education, years 16.0 (0.7) 16.7 (0.8) 17.3 (0.6) N.S N.S N.S

Clinical profile Barkley
Inattention 8.6 (8.1) 13.5 (5.8) 3.0 (3.9) N.S N.S 0.001
Hyperactivity 6.2 (7.1) 12.7 (4.7) 4.7 (5.7) N.S N.S 0.01

BDI-II 5.6 (7.1) 14.5 (8.6) 7.2 (7.8) N.S N.S N.S
YMRS 0.1 (0.3) 2.7 (5.0) 0.5 (1.4) N.S N.S N.S
MADRS 2.8 (4.7) 1.7 (2.0) 1.3 (2.3) N.S N.S N.S
BIS-11 47.2 (24.9) 69.2 (15.9) 38.5 (17.3) N.S N.S 0.05

Neuropsychological Digits Forward (WAIS) 6.6 (0.9) 7.0 (1.5) 6.3 (1.0) N.S N.S N.S
measures TMT-A 38.1 (7.9) 30.8 (9.4) 33.7 (8.0) N.S N.S N.S

RALVT
Immediate 50.3 (6.8) 47.1 (5.9) 52.4 (5.9) N.S N.S N.S
Delayed 11.3 (3.2) 10.7 (4.0) 11.8 (2.0) N.S N.S N.S
Recognition 14.0 (1.3) 12.5 (2.0) 14.8 (0.3) N.S N.S 0.002

IFS total score 24.7 (3.3) 26.8 (2.9) 27.5 (2.0) N.S N.S N.S
Digits Backward (WAIS) 5.0 (1.2) 4.7 (1.3) 5.2 (1.1) N.S N.S N.S
TMT-B 85.7 (13.5) 60.5 (17.5) 70.9 (28.8) N.S N.S N.S
Go/no-go 

Correct responses, % 85.0 (24.7) 98.2 (4.7) 100 (0.0) N.S 0.01 N.S
Commission errors, % 11.7 (24.8) 4.9 (6.4) 0.22 (0.8) N.S N.S N.S
Omission errors, % 15.0 (24.7) 1.7 (4.7) 0.0 (0.0) N.S 0.03 N.S
Reaction time, ms 393.6 (83.7) 361.0 (152.2) 387.9 (37.7) N.S N.S N.S

LNST 11.3 (2.3) 11.5 (3.3) 11.9 (1.7) N.S N.S N.S
Phonologic fluency 16.3 (5.3) 15.2 (4.5) 22.5 (4.9) N.S 0.02 0.02

 Values represent means with standard deviations in parentheses unless otherwise indicated. BDI-II = Beck Depression Inventory; 
YMRS = Young Mania Rating Scale; MADRS = Montgomery-Asberg Depression Rating Scale; BIS-11 = Barratt Impulsiveness Scale; 
TMT-A = Trail Making Test A; RALVT = Rey Verbal Learning Test; IFS = INECO Frontal Screening; TMT-B = Trail Making Test B; 
LNST = Letter-Number Sequencing Test.
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  Brain Connectivity 
 The topographical projections of connections whose 

strength increased (red) or decreased (blue) in affected 
participants, as compared with those of CT subjects, are 
shown in  figure 1 d and h for ADHD and BD groups, re-
spectively. To calculate significant differences in SL pat-
terns across groups, we conducted a paired t test with the 

SL value for each pair of channels ( fig. 1 b, f). A positive t 
value indicates that SL increased in CTs as compared to 
the patient population. Conversely, a negative t value in-
dicates that SL is greater in patients than in the CT group. 
For ADHD patients, the left, negative, tail of the distribu-
tion of t values ( fig. 1 b) was significantly greater than the 
right tail, indicating greater SL in the patient population. 

  Fig. 1.  Comparisons ADHD-CT ( a–d ) and 
BD-CT ( e–h ).  a SL-matrix, averaged for all 
participants in the ADHD group. b Distri-
bution of t-values for the test CT-ADHD. 
Red lines indicate the thresholds chosen for 
the analysis. c Resulting matrix after thresh-
olding the t-value matrix for ADHD. Val-
ues are 1, 0 or –1. d Topography of the links 
exceeding the threshold for the ADHD-CT 
comparison: Blue lines show connections 
significantly higher in CT, red lines show 
connections significantly higher in ADHD. 
e SL-matrix, averaged for all participants in 
the BD group. f Distribution of t-values for 
the test CT-BD. Red lines indicate the 
thresholds chosen for the analysis. g Re-
sulting matrix of thresholding the t-value 
matrix for BD. Values are 1, 0 or –1. h To-
pography of the links exceeding the thresh-
old for the BD-CT comparison: Blue lines 
show connections significantly higher in 
CT, red lines show connections significant-
ly higher in BD   . 
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For BD subjects, the left tail of the distribution was also 
shifted to the left, indicating higher SL values for the BD 
group than for the CT group ( fig. 1 f). Our interest was to 
understand the topography of the tails of this distribution 
(i.e. which pairs of electrodes differed most in SL between 
patients and CT subjects). For this analysis, we deter-
mined an arbitrary cutoff at t = 2 ( fig. 1 b, f) and consid-
ered the resulting matrix with values of 1, 0 or –1 depend-
ing on whether t >2, 2 > t > –2 or –2 >t. To further con-
strain the number of comparisons and generate a 
relatively sparse pattern of connections amenable to top-
ographical visualization, we only considered pairs of elec-
trodes with sufficient similarities for both groups. This 
was achieved by applying a mask resulting from the inter-
section of pairs of electrodes with SL >0.03 for the patients 
and for the CT grand average ( fig. 1 c, g). These two cut-
offs ( ∣ t ∣  >2 and SL >0.03) are admittedly arbitrary, but 
none of the results discussed in the following sections de-
pend on these choices. We found that stronger connec-
tions in the ADHD group than in the CT group were lo-
calized to the frontal lobe and extended over the midline 
to the occipital cortex. Connections that were stronger in 
the BD group than in the CT group, while more diffusely 
distributed, showed a similar pattern. Our data are con-
sistent with abnormal frontotemporal and fronto-occip-
ital networks observed in several neuropsychiatric condi-
tions  [4, 31, 35, 40, 42] . These observations did not change 
qualitatively when changing the thresholds of the binary 
difference matrix or the activation mask.

  The default mode hypothesis predicts that variability 
of intrinsic connectivity would affect brain dynamics in 
ADHD and BD patients. To assess the degree of intrinsic 
variability we built a 128 × 128 CV matrix in the same way 
that we obtained a 128 × 128 SL matrix representing the 

mean value of each connection. This analysis proved to 
be more sensitive to thresholds than the analysis of means. 
Still, we could observe connections displaying high vari-
ability in patients and CT subjects (CV >4). The previous 
analysis showed consistent and topographically orga-
nized differences in mean SL and variability between pa-
tients and CT subjects, suggesting that a distinct pattern 
of connectivity may be related to the physiopathology of 
ADHD and BD. In summary, the ADHD group present-
ed higher levels of intrinsic variability than did the CT 
group ( fig. 2 a), while the BD group presented less vari-
ability than did the CT group ( fig. 2 b). Given the central-
ity of the DMN in the intrinsic functional architecture of 
the brain, this supports the hypothesis that greater irreg-
ularity of the DMN is a potential pathophysiological 
mechanism in ADHD  [13] .

  To explore these distinct topographical patterns we 
measured the properties of the emergent networks, calcu-
lating the K value, characteristic L value and MI for each 
subject. As expected, K diminished as thresholds in-
creased, disconnecting nodes and diminishing the size of 
the network  [43] . We analyzed the K values with an 
 ANOVA with group (CT or patients) and T (binned in 8) 
as independent factors. For ADHD subjects, the results 
revealed no significant effect of group [F(1, 1) = 0.46; p > 
0.05] and a significant effect of T [F(1, 7) = 110.28; p < 
0.0001], without an interaction between these two factors 
[F(1, 7) = 0.17; p > 0.05]. These results show that, on av-
erage, K did not differ between ADHD and CT subjects 
( fig. 3 a). For the BD group, these results revealed a sig-
nificant effect of group [F(1, 1) = 3.81; p < 0.05] and a 
significant effect of T [F(1, 7) = 84.95; p < 0.0001], without 
an interaction between these two factors [F(1, 7) = 0.35; 
p > 0.05]. On average, K differed between BD and CT sub-

  Fig. 2.  Intrinsic variability in ADHD ( a ) 
and BD patients ( b ) compared to the CT 
group. 

Co
lo

r v
er

sio
n 

av
ai

la
bl

e 
on

lin
e

ADHD > CT
CT > ADHD

BD > CT
CT > BDa b

D
ow

nl
oa

de
d 

by
: 

IN
S

E
R

M
 D

IS
C

 IS
T

19
3.

54
.1

10
.3

3 
- 

3/
4/

20
14

 1
0:

22
:3

6 
A

M

http://dx.doi.org/10.1159%2F000356964


 Barttfeld    et al.  Neuropsychobiology  2014;69:65–75
DOI: 10.1159/000356964

70

Co
lo

r v
er

sio
n 

av
ai

la
bl

e 
on

lin
e

  3  

0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

0.1
6

0.1
8

0.2
0

20

40

60

80

100

120

140

De
gr

ee

Threshold

0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

0.1
6

0.1
8

0.2
0

1

2

3

4

5

6

Pa
th

 le
ng

th

Threshold

–0.1
0

0
0.0

2
0.0

4
0.0

6
0.0

8
0.1

0
0.1

2
0.1

4
0.1

6
0.1

8
0.2

0

0.1
0.2
0.3
0.4

0.7
0.8

0.6
0.5

0.9

M
od

ul
ar

ity

Threshold

ADHD > CT CT – ADHD
CT > ADHD 11

10
9
8
7
6
5
4
3
2
1
0
–1
–2
–3
–4

0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

0.1
6

0.1
8

0.2
0

20

40

60

80

100

120

140

De
gr

ee

Threshold

0.5
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

0.1
6

0.1
8

0.2
0

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Pa
th

 le
ng

th

Threshold

–0.1
0

0
0.0

2
0.0

4
0.0

6
0.0

8
0.1

0
0.1

2
0.1

4
0.1

6
0.1

8
0.2

0

0.1
0.2
0.3
0.4

0.7
0.8

0.6
0.5

0.9

M
od

ul
ar

ity

Threshold

BD > CT
CT – BDCT > BD

0
–1
–2
–3
–4
–5
–6
–7
–8
–9
–10
–11
–12
–13
–14
–15
–16
–17

a

c d

e

g h

f

b

D
ow

nl
oa

de
d 

by
: 

IN
S

E
R

M
 D

IS
C

 IS
T

19
3.

54
.1

10
.3

3 
- 

3/
4/

20
14

 1
0:

22
:3

6 
A

M

http://dx.doi.org/10.1159%2F000356964


 Functional Connectivity in ADHD and 
BD 

 Neuropsychobiology  2014;69:65–75
DOI: 10.1159/000356964

71

jects ( fig. 3 e). Collapsing the resulting K values across Ts, 
we observed that the K maps were not homogeneous 
( fig.  3 b, f). The figure shows the differences between 
scalps of CT subjects and patients. The ADHD group 
showed larger K values than the CT group in frontal re-
gions and smaller K values in regions near the parietal and 
occipital cortex; this distribution is consistent with the 
pattern observed in  figures 1  and  2 . The BD group showed 
larger K values than the CT group mainly in the frontal 
region [ figure 3 b, f; green dots mark electrodes where 
K(CT) > K(patients), p < 0.01]. 

  As T increases, fewer edges remain and hence L in-
creases ( fig. 3 c, g). We analyzed L values with an ANOVA 
with group (CT or patients) and T (binned in 8) as inde-
pendent factors. For the ADHD group, the results re-
vealed a nonsignificant effect of group [F(1, 1) = 0.1; p > 
0.05] and a significant effect of T [F(1, 4) = 50.68; p < 
0.0001], with no interaction between these two factors 
[F(1, 4) = 1.85; p > 0.05;  fig. 3 c]. For the BD group, the 
results revealed a significant effect of group [F(1, 1)  = 
7.66; p < 0.01] as well as threshold [F(1, 4) = 39.75; p < 
0.0001], with no interaction between these two factors 
[F(1, 4) = 1.25; p > 0.05]. These results show that L was 
shorter for the BD group ( fig. 3 g).

  A direct consequence of the excess of long-range con-
nections found in patients is that cortical areas may be-
come relatively more integrated, resulting in a less 
 modular organization  [37] . We estimated MI, which re-
ports the tendency of a network to split into modules 
( fig. 3 d, h). As T increases, fewer edges remain, and MI 
increases. An ANOVA with group (CT or patients) and 
T (binned in 8) as independent factors showed that for 
the ADHD group, the results revealed nonsignificant 
 effects [F(1, 1) = 0.7; p > 0.05] for group and a significant 
effect for T [F(1, 7) = 81.61; p < 0.0001], with no interac-
tion between these two factors [F(1, 7) = 0.04; p > 0.05]. 
These results show that MI did not differ between groups 
( fig. 3 d). For the BD group, the results revealed a signifi-
cant effect [F(1, 1) = 8.13; p < 0.01] for group and a sig-
nificant effect for T [F(1, 7) = 63.87; p < 0.0001], with no 
interaction between these two factors [F(1, 4) = 0.26; p > 
0.05]. These results show that MI in the BD group dif-

fered from that of the CT group ( fig. 3 h). These results 
suggest that the excess of connections in ADHD does not 
affect the global organization of modules within the 
ADHD brain. However, in BD, more long-range connec-
tions linked anterior to posterior areas; the number of 
modules was also smaller, and all brain areas were more 
integrated than in CT subjects.

  To examine intrinsic variability in relation to individ-
ual differences and pathological severity, we measured 
the correlations between neuropsychological assessments 
and clinical scores. No direct correlations were observed 
between intrinsic variability and any individual neuro-
psychological test scores. When considering  global  scores 
of executive function and memory for the ADHD group, 
but not for the BD or CT groups, there was a significant 
correlation between mean CV across all connections and 
mean performance on executive function and memory 
tasks (ADHD: r = –0.784, p < 0.05; BD: r = 0.270, p = 0.25; 
CT: r = 0.009, p = 0.97). This pattern suggests that intrin-
sic variability affects neurocognitive performance in 
ADHD, as proposed by the DMN hypothesis  [13] .

  We also found relevant patterns of significant correla-
tions between measures of clinical assessment and intrin-
sic variability. For depression, both affected groups 
showed an increase in connectivity as depression scores 
increased. This is in agreement with our results ( fig. 1 ) that 
show that the pathological state is related to an increase in 
connectivity ( fig. 4 a, b). Impulsivity ( fig. 4 c, d) and hyper-
activity ( fig. 4 g, h) revealed a similar pattern. While ADHD 
participants clearly showed positive correlations between 
connectivity and assessment scores (involving mostly 
frontal and central areas), BD subjects showed a negative 
trend between connectivity and assessment scores (also 
mainly in frontal areas). We also found significant corre-
lations between anxiety and connectivity. While ADHD 
subjects exhibited more negative than positive correla-
tions, BD subjects exhibited more positive than negative 
correlations, suggesting inverse relationships with anxiety 
in the two patient groups. In ADHD negative connectiv-
ity was related to increased anxiety, while in BD, an in-
crease in connectivity (according to the results illustrated 
in  fig. 1 ) was associated with increased anxiety.

  Fig. 3.  Network properties and graph theory metrics. a Average 
degree of CT and ADHD groups as a function of threshold. b Top-
ographic map of the degree, for CT-ADHD. Green dots indicate 
electrodes where KCT > KADHD. Pink dots indicate electrodes 
where KADHD > KCT, p < 0.01. c Characteristic path length (L) 
of CT and ADHD as a function of threshold. CT group shows 
larger L than ADHD. d Modularity of CT and ADHD as a function 

of threshold. e Average degree of CT and BD groups as a function 
of threshold. f Topographic map of the degree, for CT-BD. Green 
dots indicate electrodes where KCT > KBD. Pink dots indicate 
electrodes where KBD > KCT, p < 0.01. g Characteristic path 
length (L) of CT and BD as a function of threshold. CT group 
shows larger L than BD. h Modularity of CT and BD as a function 
of threshold. CT group shows larger MI than BD.  
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  Discussion  

 We found that analysis of functional connectivity dur-
ing resting-state EEG (i.e. the intrinsic variability of the 
brain) provided substantial differential information re-
garding the diagnoses of ADHD and BD even in eu-
thymia. This is a relatively simple clinical assessment, re-
quiring only a few min of eyes-closed EEG recording, and 
hence may be incorporated easily into clinical practice. 
Our data demonstrated an overall enhancement of brain 
connectivity in both ADHD and BD. As compared with 
those of controls, intrinsic variability was enhanced in 
ADHD subjects and reduced in BD subjects. Graph the-
ory metrics confirmed the existence of several abnormal 
network features in both affected groups. Connectivity 
indices were also significantly correlated with neuropsy-

chological performance and clinical measures. In ADHD 
subjects, greater intrinsic variability was associated with 
deficits in cognitive performance, and connectivity ab-
normalities were related to ADHD symptomatology. In 
BD subjects, levels of anxiety and depression were related 
to abnormal frontotemporal connectivity. 

  Our data confirm previous reports of connectivity ab-
normalities in ADHD [for reviews, see  12–14] . Increased 
connectivity measures in low frequency oscillations of the 
DMN have been reported in subjects with ADHD  [44] . 
Attention-induced EEG deactivations which differ be-
tween participants with high vs. low ADHD ratings have 
intracranial sources related to the DMN  [14] . Moreover, 
our data support the DMN hypothesis  [13]  by showing 
that variability of brain connectivity is related to the neu-
rocognitive profiles of ADHD subjects. Increased con-

  Fig. 4.  Correlations between measures of 
clinical assessment and intrinsic variability 
in ADHD (       a ,  c ,  e ) and BD ( b ,  d ,  f ).  a ,  b  
Depression.  c ,  d  Impulsivity.  e ,  f  Hyperac-
tivity. 
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nectivity in ADHD subjects was related to higher levels of 
depression, impulsivity and hyperactivity.

  In the same vein, our data confirm the existence of an 
abnormal connectivity in BD subjects  [15, 16, 19–23] . In 
comparison with these previous studies, here we report 
the distinctive features that specifically characterize con-
nectivity during euthymia, presenting as higher density 
but less variable and more diffuse long-range brain con-
nections compared to controls. These increased connec-
tions were related to higher levels of depression and to 
increased anxiety. A ubiquitous aspect of brain function 
is its modular organization, with a large number of pro-
cessors (neurons, columns or entire areas) working in 
parallel but the presence of bottlenecks in the processing 
of information  [45–47] . Our findings suggest that BD and 
ADHD individuals may have an altered sequential pro-
cessing. Beyond these broad group differences, our data 
also show a consistent relationship between network 
properties and severity of clinical symptoms. The EEG-
DMN is well described by delta prefrontal activation with 
expansion of spatial field  [24]  and combined EEG/func-
tional MRI recordings point to delta EEG activity as the 
core DMN frequency band  [25] . Consistently, we found 
abnormal connectivity measures in the delta band in both 
BD and ADHD. Nevertheless, other bands such as beta 
 [48]  should also be assessed in future studies of the DMN 
in BD and ADHD. 

  As expected, ADHD subjects showed higher scores for 
inattention and hyperactivity as compared with those of 
BD and control subjects. Furthermore, ADHD patients 
exhibited higher levels of impulsivity, which is expected 
in this clinical population  [49] . In agreement with previ-
ous studies (e.g. Torralva et al.  [5] ), we found that both 
ADHD and BD subjects showed deficits in verbal mem-
ory and executive function  [4–6, 28] . Attentional lapses 
and performance variability  [50]  are core characteristics 
of ADHD that may be related to DMN abnormalities  [51, 
52] . We found correlations between intrinsic variability 
of brain connectivity and performance in executive func-
tion and memory tests, which is consistent with the hy-
pothesis that DMN dysregulation may underlie the cog-
nitive deficits that are observed in ADHD  [13] . We found 
that both ADHD and BD patients showed increases in 
intrinsic variability as depression scores increased. Previ-
ous studies  [53]  have consistently suggested that the ru-
minative nature of depression would be reflected in in-
creased resting-state functional connectivity in frontal 
areas. Anxiety is a feature that has been described in BD 
 [54] . The positive association between connectivity and 
anxiety observed in BD subjects is consistent with a previ-

ous study  [55]  showing that functional connectivity was 
increased during self-referential processes in anxiety dis-
orders.

  The principal limitation of this study is that the num-
ber of patients was restricted, and therefore more subtle 
differences may have been missed due to a lack of statisti-
cal power. However, the exclusion of patients with co-
morbidities and those receiving medications that might 
modify their electrophysiological responses accounts for 
the modest size of our sample. Moreover, the clinical rel-
evance of the connectivity measure was proved in spite of 
the sample size provided. Finally, as all previous reports 
comparing ADHD and BD patients, potential confound-
ing effects of medication were not completely ruled out. 
As with almost all previous studies, BD patients in the 
current study were taking medications (although we did 
not include participants on antipsychotics). And even if 
ADHD participants suspended medication on the day of 
data collection, the short-term withdrawal of stimulants 
may affect brain function. Therefore, we cannot discount 
the influence of stimulants on cognitive function. Future 
work should seek to replicate our findings in drug-naive 
participants to avoid the possible long-term effects of 
medication.

  Conclusions 

 Our results provide new evidence linking clinical pro-
files, brain connectivity and plausible models of ADHD 
and BD pathophysiology. In ADHD subjects, connectivity 
at rest may help to explain intraindividual variability in 
several cognitive domains, as well as their clinical profiles. 
In recent studies of BD subjects, cognitive impairments 
and neuroanatomical changes have been related to chang-
es in neuroplasticity and connectivity  [18, 56] . Our data 
suggest that an altered connectivity in frontotemporal cir-
cuits of BD subjects may be a candidate mechanism for 
their clinical and neurocognitive profile. Thus, brain con-
nectivity and its variability may be shared and be segre-
gated features underlying impairments in BD and ADHD.
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