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At rest, the brain is traversed by spontaneous functional connectiv-
ity patterns. Two hypotheses have been proposed for their origins:
they may reflect a continuous stream of ongoing cognitive pro-
cesses as well as random fluctuations shaped by a fixed anatomical
connectivity matrix. Here we show that both sources contribute to
the shaping of resting-state networks, yet with distinct contribu-
tions during consciousness and anesthesia. We measured dynamical
functional connectivity with functional MRI during the resting state
in awake and anesthetized monkeys. Under anesthesia, the more
frequent functional connectivity patterns inherit the structure of
anatomical connectivity, exhibit fewer small-world properties, and
lack negative correlations. Conversely, wakefulness is characterized
by the sequential exploration of a richer repertoire of functional
configurations, often dissimilar to anatomical structure, and com-
prising positive and negative correlations among brain regions.
These results reconcile theories of consciousness with observations
of long-range correlation in the anesthetized brain and show that
a rich functional dynamics might constitute a signature of con-
sciousness, with potential clinical implications for the detection of
awareness in anesthesia and brain-lesioned patients.

consciousness | functional connectivity | structural connectivity |
dynamics | anesthesia

During the awake resting state, spontaneous brain activity is
highly structured. Functional MRI (fMRI) recordings in-

dicate that brain activity constantly waxes and wanes in a tightly
correlated manner across distant brain regions, forming re-
producible patterns of functional connectivity that exhibit both
a rich temporal dynamics (1, 2) and spatial organization into
functional networks (3, 4). Ever since the discovery of these
resting state patterns, their interpretation has been debated.
Many of these patterns match those observed during active cog-
nitive tasks, suggesting that they might arise from a spontaneous,
endogenous activation of cognitive processes (5, 6). Indeed, the
default mode network (DMN), the most prominent functional
network at rest, is most active when subjects direct attention to
inward processes, such as daydreaming or imagining (6). Fur-
thermore, when a subject is interrupted during the resting state,
functional connectivity patterns at the time of interruption can
partially predict whether a subject was imagining or mind wan-
dering (7, 8), and what was the focus of attention (9).
Although these findings show that part of the resting state

brain activity, at least, indexes ongoing mental content, this
conclusion appears to be in conflict with other studies showing
that long-range resting-state functional connectivity persists even
after loss of consciousness (LOC) due to general anesthesia (10,
11) or in vegetative state (VS) patients (12, 13). Although a small
proportion of VS patients show a high degree of residual cog-
nitive activity (14, 15), this is unlikely to be the case during
general anesthesia, suggesting that complex functional connec-
tivity patterns can also arise purely as the result of a semirandom

circulation of spontaneous neural activity along fixed anatomical
routes. Indeed, mean-field simulations models of resting state
brain activity provide a relatively good match to the observed
static functional connectivity patterns by simply implementing
a noisy reverberation within the known whole-brain connectivity
matrix, without making any specific assumption about ongoing
cognitive processes (16, 17).
These studies raise the following questions. Is resting-state

activity a mere manifestation of the organized structural con-
nectivity matrix, which is hence preserved even in absence of
consciousness, for instance, during general anesthesia? Or al-
ternatively, do some aspects of resting state brain activity spe-
cifically reflect the flow of cognitive processes that characterizes
the conscious state? If so, how should functional connectivity
data be processed to extract signatures of the conscious state, i.e.,
features of resting state activity that are only present in the awake
state and disappear with the loss of consciousness? Identifying
such signatures may have important consequences for clinical
practice, as it would add to the small number of brain-imaging
paradigms that are currently available to diagnose residual
consciousness in VS patients (15, 18–20).
Here, we set out to address these questions by comparing

fMRI images of spontaneous fluctuations in monkey brain ac-
tivity either in the awake state or while undergoing general an-
esthesia. Our working hypothesis, based on dynamical systems
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What are the origins of resting-state functional connectivity
patterns? One dominating view is that they index ongoing
cognitive processes. However, this conclusion is in conflict with
studies showing that long-range functional connectivity per-
sists after loss of consciousness, possibly reflecting structural
connectivity maps. In this work we respond to this question
showing that in fact both sources have a clear and separable
contribution to resting-state patterns. We show that under
anesthesia, the dominating functional configurations have low
information capacity and lack negative correlations. Impor-
tantly, they are rigid, tied to the anatomical map. Conversely,
wakefulness is characterized by the dynamical exploration of
a rich, flexible repertoire of functional configurations. These
dynamical properties constitute a signature of consciousness.
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simulations of resting state brain activity (16, 21–24), is that
signatures of the conscious state lie in the dynamics of sponta-
neous brain activity. When averaged across a long time period,
functional brain activity may appear similar in wakefulness and
anesthesia (10, 11, 25), due to the existence of a backbone ana-
tomical connectivity. However, the implicit assumption of tem-
poral stationarity underlying typical resting state analyses, while
useful, might provide a wrong image of the underlying functional
configurations (just like the averaged outcome of tossing a fair
coin, i.e., 50% heads, may not even be a possible state of the
world). Indeed, several techniques have recently emerged to
avoid the temporal averaging step and replace it with a direct
visualization of the temporal dynamics of spontaneous brain
activity patterns (26–28). These techniques have revealed a far
richer picture of the nature, duration, and transition probabilities
of human resting state activity in the awake condition (26–28),
but they have not yet been applied to the identification of how
these characteristics change during the loss of consciousness.
Theories and simulations of brain operations suggest that the

temporal dynamics of brain networks should be very different
during wakefulness and after loss of consciousness due to anes-
thesia, coma, or sleep. The awake condition should be charac-
terized by an active exploration of a high diversity of network
states (22–24), forming the ceaselessly fluctuating “stream of
consciousness” described by William James. During the non-
conscious condition, however, spontaneous activity should reduce
to the circulation of a more random pattern of neural activity
shaped and constrained by the anatomical connectivity (17, 21).
According to this view, the role of structural connectivity in
sculpting functional connectivity maps should vary during wake-
fulness and anesthesia. Although wakefulness should be charac-
terized by a rich repertoire of connectivity patterns (23), the
functional connectivity patterns of the sedated brain should highly
resemble the underlying structural map (16).

Results
We compared the dynamics of resting state fMRI networks in
macaque monkeys (Macaca mulatta) under three levels of vigi-
lance: the awake resting state and two levels of propofol sedation
(moderate and deep; SI Materials and Methods and Table S1).
Functional connectivity was measured between 82 previously
defined cortical regions of interest (ROIs) (Table S2) for which
an approximate matrix of intra- and interhemispheric anatomical
connectivity is available, based on a large number of previous
tracer studies (CoCoMac database) (29).
For reference, we first measured the classical time-averaged

stationary pattern of functional correlations. To this aim, we
estimated the Fisher-transformed covariance matrix Zc,s for each
vigilance condition c and session s. The matrix entry Zc,s(i,j)
indicates the temporal covariance of the average fMRI signal of
ROIs i and j throughout an entire fMRI session (20 min) (Fig.
1A). This static analysis confirmed the persistence of long-range
stationary connections under anesthesia (10, 11), involving key
nodes of the default-mode network (Fig. 1 B–D). In the awake
condition, we observed a positive cluster of connections localized
mainly to frontal and midline cortical regions. Positive connec-
tions formed a complex long-distance graph including anterior
and posterior cingulate cortex, dorsomedial prefrontal cortex, as
well as nodes in peripheral areas such as primary motor, senso-
rimotor, and auditory cortices (see Table S3 for a list of the most
connected ROIs). In the awake resting state, a large number of
negative connections spread more broadly projecting to the more
posterior regions of the brain. In the two levels of sedation we still
observed a large number of significant correlations, but the vast
majority were positive (Fig. 1 C and D).
Quantification and statistical analysis of those results indicated

that the stationary connectivity matrix provided only partial
indications of the state of consciousness. The average positive

z-value diminished under sedation compared with the awake
condition (Fig. 1E; awake vs. moderate sedation, bootstrap anal-
ysis, P < 10−3; SI Materials and Methods; awake vs. deep sedation,
P < 10−4), but there were no significant differences between both
sedation conditions (moderate sedation vs. deep sedation, P >
0.1). The ratio of negative to positive correlations also diminished
significantly in sedation conditions compared with the awake
condition (Fig. 1F; awake vs. moderate sedation, P < 10−3; awake
vs. deep sedation, P < 10−4) and, marginally, between sedation
conditions (moderate sedation vs. deep sedation, P < 0.05). Thus,
under anesthesia, brain regions tended to be more weakly coupled
than in the wake condition, and most of the negative correlations
were lost.
Next we tested the prediction that the temporal dynamics of

brain connectivity would sharply vary with the level of vigilance.
For this, following the procedure described by Allen et al. (26),
we estimated sliding window Fisher-transformed covariance
matrices Zc,s,w, for each fMRI vigilance condition c, session s,
and time window w (26, 30) (similar results were obtained using
the inverse covariance matrix; SI Materials and Methods). As
recently reported (26–28), the covariance between specific ROI
pairs, as well as the whole-brain average of the covariance,
constantly varied over time (Fig. 1G and Movie S1). We iden-
tified the dominant recurrent patterns of brain connectivity [re-
ferred to as brain states (BSs)] by means of an unsupervised
clustering method along the time dimension of the Zc,s,w matrix
(26). To avoid any bias, this analysis was performed on the data
from all vigilance conditions mixed. As in previous studies (26),
we set the predefined number of brain states n to 7, but varying
the number of states did not change any of the main findings
reported here (Fig. S1). The method provides, for each point in
time, the most likely state of functional connectivity, allowing us
to compare how these states and their dynamics vary with the
level of vigilance.
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Fig. 1. Stationary functional connectivity as a function of vigilance condi-
tion. (A) Average connectivity matrices for all vigilance conditions. (B–D)
Brain renders displaying all significant connections (P < 0.001, FDR corrected)
for wake (B), moderate (C), and deep (D) sedation conditions. Red lines
represent positive connections between ROIs; blue lines represent negative
connections. (E) Average positive z-values within each sedation conditions.
In all plots, error bars represent 1 SEM. (F) Ratio of negative to positive
z-values. Ratios are calculated for each scanning session, and averaged
within each sedation condition. (G) Time course of the L1 norm of the matrix
Zc,s,w for w = 1–464, of a sample fMRI session (condition awake, session 14 of
monkey J). Inserted matrices show whole brain connectivity patterns at
different time points.
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To evaluate whether dynamic long-range connectivity reduces
to the underlying structural connectivity map specifically during
loss of consciousness, we ranked all brain states (Fig. 2A and Fig.
S2) according to their similarity (Fig. S3 and SI Materials and
Methods) to the CoCoMac (29) structural connectivity matrix
(Fig. 2B and Fig. S4). We then explored how the probability of
occurrence of each brain state varied with the vigilance condi-
tion. Probability of occurrence of brain state n was estimated as
the proportion of times each matrix Zc,s,w was classified as be-
longing to that brain state. In the awake condition, most brain
states (except brain states 3 and 4) had a similar probability of
occurrence, and this probability was not modulated by the sim-
ilarity of the functional network to structural connectivity
(β-value = 0.049; R2 = 0.001; P > 0.9; Fig. 2 D and E). In con-
trast, the probability distribution of brain states was heavily
reshaped under sedation (Fig. 2 D, F, and G): the more similar
a brain state of functional connectivity was to structural con-
nectivity, the more probable it became under sedation (re-
gression analysis; moderate sedation: β-value = 0.66; R2 = 0.93;
P < 10−3; deep sedation: β-value = 0.53; R2 = 0.87; P < 10−2; Fig. 2
F andG). To quantify this, we ran a fixed effect ANOVA on mean
rank similarity as function of vigilance level (where rank 7 is the

closest to the anatomical connectivity matrix). The change in brain
state composition was significantly altered by sedation [mean rank:
awake = 4.25; moderate sedation = 5.20; deep sedation = 5.73;
F(2,74) = 30.51, P < 10−8]. In fact, the occurrence probability of
some brain states, notably states 1 and 2 with the lowest similarity,
was so low that they never occurred during sedation. Corre-
spondingly, brain state 7, most similar to anatomical structure,
became functionally dominant and its occurrence probability was
strongly modulated by vigilance level [ANOVA mean rank simi-
larity; mean rank: awake = 0.16; moderate sedation = 0.41; deep
sedation = 0.48; F(2,74) = 19.08, P < 10−6; Fig. 2 F and G].
Having identified brain states that are either typical of con-

scious function or dominant during sedation, we next sought to
understand how their network properties and topology differed.
First, we calculated for each brain state n the average absolute
covariance cxj linking each ROI j to all other ROIs (SI Materials
and Methods), an estimate of the average functional coupling for
this brain region. Across the seven brain states, the cxj value
decreased with increasing similarity to anatomy (regression
analysis; β-value = -0.81; R2 = 0.84, P < 0.005). This observation
showed that the larger the similarity score, and therefore the
more probable a brain state under anesthesia, the weaker the
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Fig. 2. Dynamical connectivity and brain states for all vigilance conditions. (A) Seven brain states, obtained by unsupervised clustering of the Zc,s,w matrix.
Brain states are sorted according to their similarity to the structural connectivity matrix. (B) Structural matrix derived from the CoCoMac atlas of anatomical
macaque cortical connectivity. Colors represents the four grades of connection intensity (black = 0; white = 1; blue = 2; and red = 3). (C) Brain renders
displaying the 400 strongest links, for each brain state. Red lines represent positive connections between ROIs; blue lines represent negative connections.
Brain render for the CoCoMac structural matrix displays all links with a value of 3, the maximum value of structural connectivity. (D) Probability distributions
of brain states for all vigilance condition. Each bar represents the within-condition probability of occurrence of a state. Error bars stand for SEM. (E–G)
Probability of occurrence of each brain state as a function of the similarity between functional and structural connectivity for awake (E), moderate (F), and
deep (G) conditions. Each point in the figure corresponds to a brain state, characterized both by a similarity score and a probability of occurrence within each
vigilance condition. Error bars show SEM. (H) Probability distribution of all z-values for brain states 1 (the least similar to structure brain state) and 7 (the most
similar to structure brain state). (I and J) 2D probability distribution of all z-values for brain state 1 (I) and brain state 7 (J), as a function of the distance of every
pair of ROIs. Distance is normalized by the largest distance within the Kotter and Wanke brain atlas. (K) Community decomposition for the Kotter and Wanke
brain atlas, taken from Shen et al. (31). Four nonoverlapping communities are defined: frontopolar (community 1), fronto-temporal (community 2), fronto-
parietal (community 3), and occipito-temporal (community 4). (L) R2 value for the regressions between absolute correlation value between ROIs of every pair
of communities and similarity score. Asterisks mark significant regression, at P < 0.05 (Bonferroni corrected for multiple comparisons). (M) Ratio between
intercommunity z-values and intracommunity z-values for each brain state, as a function of the similarity score. (N) Small world index of all brain states, as
a function of the similarity score. Each point represents the small world value of a given brain state. (O) Average life time of brain states for all sedation
conditions. Error bars stand for SEM.
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functional coupling between brain regions. Indeed, the SD of
the distribution of functional connectivity values increased as the
similarity score decreased (β-value = −1.54; R2 = 0.86, P < 0.01),
reflecting a decrease in the number of connections with strongly
positive (β-value = −0.76; R2 = 0.78, P < 0.01) and, most notably,
strongly negative (β-value = −0.83; R2 = 0.92, P < 10−3) weights.
The change in SD of distribution is clearly visible when com-
paring the histogram of functional connectivity measures for
brain states 7 (most frequent under sedation) and 1 (least fre-
quent) (Fig. 2H). Although the distribution of z-values of brain
state 7 was single-peaked and close to a Gaussian distribution
centered on zero, indicating low and sparse connectivity, the
distribution for brain state 1 was two-peaked, evidencing the
presence of strong functional correlations and anticorrelations
unique to the awake condition.
We further analyzed how functional connectivity varied with

the spatial distance between two brain regions in all brain states.
For brain state 1, connectivity strength decreased only moder-
ately with distance, and dense strong connections (positive and
negative) were observed even for very distal pairs of nodes (Fig.
2I). Brain state 7 showed a very different pattern (Fig. 2J), with
a predominance of short-range strong connections and a func-
tional connectivity dropping to zero as distance increases. Sta-
tistical analysis revealed a monotonic decrement in connectivity
strength as a function of distance along the similarity axis:
whereas z-values decreased with distance for all brain states, the
more similar a brain state was to structure, the faster correlations
decayed with distance (β-value = −0.48; R2 = 0.77, P < 0.01).
We next investigated the topological properties of brain states.

To this aim, we used a preexisting partition of the ROI set into
communities (31) (Fig. 2K). Community decomposition sub-
divides the matrix into nonoverlapping groups of ROIs in a way
that maximizes the number of within-group edges and minimizes
the number of between-group edges (3, 32) (see Table S2 for
the community membership of each ROI). In accordance with
our previous results, we observed that the absolute value of
correlation between any pair of communities diminished along
the similarity axis, but this diminution was only significant
after Bonferroni correction for the pairs linking community 3
(fronto-parietal) with communities 1 (frontopolar) and 4 (occipito-
temporal) (Fig. 2L; P < 0.05, Bonferroni corrected). Furthermore,
the ratio between intermodule and intramodule correlation
monotonically diminished as similarity score increased (Fig.
2M; β-value = −1.07; R2 = 0.83, P < 0.01). Importantly, inter-
module correlations were negative on average for all brain
states, i.e., the ratio of negative intermodule and negative
intramodule correlations was higher than 1 for all brain states.
Thus, under sedation, the brain functional networks disaggre-
gate into a preexisting set of functional backbone modules.
The observed changes in functional topology suggest that se-

dation leads to a drop in the overall level of integration of brain
areas into an efficient network. We quantified this through the
Small World (SM) index, which quantifies the optimality of
a network in terms of integration (measuring distance between
nodes) and segregation (measuring the tendency of a network to
form clusters of nodes) (3, 33). We found that, even after nor-
malizing brain states by the strength of connections to rule out
trivial differences, the SM index diminished monotonically as the
similarity score increased (Fig. 2N; β-value = −1.82; R2 = 0.75;
P < 0.02): the more similar to structure a brain state is and
therefore the more likely it is to dominate in the sedated brain,
the lower its network capacity. Recent anatomical observations
concur with the present results in suggesting that the structural
network of the macaque brain does not fit well with a SM ar-
chitecture (34). Crucially, our results show that, in the wake
condition only, the constantly fluctuating functional networks
that ride on top of this fixed architecture constitute a better
approximation of this optimal communication structure (3, 33).

We next analyzed the average time duration of each brain
state (or, equivalently, the probability that a state BSn is followed
by itself) as a way to estimate the stability of dynamical con-
nectivity. Sedation increased the average duration of brain states,
even after subtracting the duration increment explained by the
increased presence of certain states (Fig. 2O; bootstrap analysis;
awake vs. moderate sedation, P < 0.05; awake vs. deep sedation,
P < 10−4; moderate sedation vs. deep sedation, P < 10−4). These
changes are mostly explained by the increased duration of brain
state 7 that dominates during deep sedation (Fig. 2O).
To further characterize the temporal dynamics of brain states,

we conducted a detrended fluctuation analysis (DFA; SI Mate-
rials and Methods) to estimate the degree of autocorrelation in
the time series giving rise to different brain states. For each
session and each time series, we used DFA to estimate the Hurst
exponent (H). H measures the amount and type of autocorre-
lation present in a time series. An H value larger than 0.5 indi-
cates that the time series is correlated in time, whereas an H
value of 0.5 indicates that the time series is close to white noise,
exhibiting no correlation in time. H was significantly lower during
deep sedation than in the awake condition (Fig. S5 A and B)
(Hawake = 0.772; Hdeep = 0.722; bootstrap analysis, P = 0.03), and
marginally lower in moderate sedation than in awake (Hmoderate =
0.724; bootstrap analysis, P = 0.05) but did not differ significantly
between sedation conditions (P > 0.1). The drop in H value indi-
cates, in agreement with previous work on sleep (35) and anes-
thesia (36), that there is a breakdown of temporal integration in
the sedated brain. To relate the fluctuations in H value over dif-
ferent sessions with fluctuations in brain states, we calculated
for every session the mean similarity score index, or the average
similarity to the anatomical connectivity matrix score across all
brain states present in a single session. A session composed almost
entirely of brain state 7 will thus have a higher similarity score than
a session composed mainly of brain states 1 and 2, which are most
different from structural connectivity. We found that the higher
the mean similarity score in a given session, the lower the H value
(Fig. S5 C and D; regression analysis across all sessions: β-value =
−0.20; R2 = 0.18; P = 10−4). This observation shows that the brain
states closest to structure, those that dominate under sedation,
arise from time series that increasingly lack a temporal memory (as
their Hurst exponent H moves closer to 0.5) and thus increasingly
resemble a semirandom circulation of spontaneous neural activity.

Discussion
As previously suggested by experiments in sedated rats and
monkeys (10, 11), our results reveal that under general anes-
thesia, spontaneous brain activity converges to a few or even
a single dominant brain dynamical pattern, still characterized by
a broad set of long-range functional connections, but with weak,
positive, nonspecific couplings that rigidly parallel the underlying
structural map. Above and beyond this conclusion, here we dem-
onstrate that the sedated state is characterized by a radical change
in brain dynamics, with a drastic reduction in the spontaneous
temporal exploration of many different brain configurations. By
acquiring, in the same monkeys, fMRI images of awake and se-
dated spontaneous activity in the entire brain and decomposing
these signals over time, we observed a much greater diversity of
brain states during wakefulness.
Our results do not merely reflect a slowing down of brain

activity. First, in each fMRI run, we compute the functional
connectivity states over a full 20 min of fMRI data. If the
anesthetized brain presented the same set of states and merely
took a longer time to move from one state to the other, the same
overall set of states would be eventually detected. What we see
instead is a radical change in the distribution of states and the
dominance of a very small set of states closely resembling the
anatomical connectivity matrix. To further rule out the possibility
that our results arise from slower interactions between brain areas
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under sedation, we conducted a lagged-correlation analysis that
allowed for lags of up to two samples (4.8 s) between brain
regions. The results were extremely similar to the zero-lag analysis
(Fig. S6 and SI Materials and Methods), showing that the changes
related to sedation are not simply due to a slower dynamics.
Our findings fit squarely with dynamical systems simulations of

resting state brain activity (16, 21, 37). Such simulations have
established that, for low coupling strength between brain areas—
a configuration that resembles the sedated condition—sponta-
neous neuronal activity is still present but mostly traces the fixed
network defined by structural connectivity, and as a result, only
a single stable spontaneous connectivity pattern occurs (16, 17).
As the coupling strength increases, a qualitative change in the
dynamics occurs: instead of having a single stable state, the
system becomes multistable; functional activity spontaneously
breaks down into a diversity of states that is sequentially explored
in a stochastic manner (16, 21, 23, 37, 38). It has been argued
that the brain operates precisely at the edge of this dynamical
change—or critical state (39)—in which the system is maximally
sensitive to external stimulation.
An interesting apparent paradox arises from our results: al-

though the brain states closer to structure become more prom-
inent and more durable under sedation, the Hurst exponent
associated with the sedation conditions, and specifically with
those brain states closest to structure, is relatively low compared
with the awake condition, indicating a reduced temporal auto-
correlation. The latter observation is consistent with the litera-
ture on sleep (35) and anesthesia (36): a loss of consciousness is
associated with a drop in H value toward 0.5, the value that arises
when the dynamics of time series is close to white noise, lacking
temporal memory. How could more stable brain states arise from
noisier and increasingly memoryless time series? A possible ex-
planation comes again from dynamical systems modeling (16).
As mentioned, for low coupling strength between brain areas,
a single stable spontaneous connectivity pattern exists. Because it
becomes the only available attractor, the sedated brain cannot
depart from it and remains confined to a semirandom explora-
tion of the valley surrounding it, thus simultaneously exhibiting
interregional correlations along fixed anatomical routes and
a memoryless trajectory with diminished autocorrelation.
Our results are also in agreement with several theories of

consciousness (22, 24) and earlier observations in sleep, anes-
thesia, and VS (18, 40–43). Several theories of consciousness
posit that distributed functional networks support conscious
states and that loss of consciousness is indexed by alterations of
these network patterns (22, 24, 42). According to these theories,
the functional networks that support consciousness must display
both global integration—evidenced as a strong coupling between
long-distance brain regions—and a large repertoire of hetero-
geneous functional states of activity (44). In full agreement with
these ideas, our results show that the brain functional config-
urations that characterize the sedated condition exhibit persist-
ing long-range connections along structural pathways but lack
both strong coupling and a rich repertoire of cognitive states.
Importantly, because the data were processed identically in all

conditions, the changes we observe across conditions cannot be
attributed to commonly discussed methodological artifacts. In
particular, we observed that the presence of negative correla-
tions is characteristic of wakefulness. Anticorrelations between
task-negative and task-positive networks have long been reported
to occur during both wakeful rest and the performance of spe-
cific cognitive tasks (2), but their importance in the functional
connectivity matrix has been debated in the past, because such
negative links could be partially induced by temporal filtering
and other data processing techniques such as subtraction of the
overall mean brain activity (45). Here we show that, for a con-
stant data processing strategy, negative functional correlations
between regions are virtually absent in the anesthetized brain

and become significantly increased in the awake brain. This ob-
servation implies that such negative or anticorrelations cannot be
entirely imputed to artifacts of the analysis method, but are
a genuine characteristic of the conscious resting brain that van-
ishes during anesthesia. It appears that during conscious rest,
among the many potential brain activity states that are afforded by
the static connectivity matrix, a subset of active areas is selected at
a given moment, whereas others are actively extinguished, giving
rising to a characteristic pattern of positive and negative links. This
finding also fits with the Global Neuronal Workspace theory (22),
according to which the “ignition” of a global neural state coding
for a particularly conscious content leads to the active inhibition
of other potential contents (37) and therefore induces a central
bottleneck in dual-task processing (46, 47).
An important consequence of the present results, which should

be tested in future research, is that the temporal dynamics of
spontaneous brain activity, measured using the entropy of the
state transition matrix, might supplement existing tools (18, 19,
42) as a clinically useful index of consciousness in vegetative
patients and during anesthesia. Detecting residual consciousness
in patients remains a difficult clinical problem, as it has been
determined that as many as 40% of locked-in syndrome patients
(who are fully conscious) initially fail to be detected, even in ex-
perienced clinical centers (48), and some patients in an apparent
VS may simply lack any of the behavioral means of manifesting
their preserved consciousness to their surroundings (14, 15).
Several brain-imaging tests are now available to detect residual
signs of consciousness, but the vast majority of them require
subjects to perform a demanding cognitive task [e.g., imagining
playing tennis (15), counting rare sounds (49), or watching
a Hitchcock movie (20)]. Only recently have purely passive tests
been proposed, based solely on the quantification of the propa-
gation of activity in distributed areas of the cortex (18, 42). The
present work opens up the possibility that residual consciousness
could be quantified by simply monitoring the dynamics of resting
state activity. More specifically, it suggests that the mere presence
of long-distance functional connectivity networks may not be
a sufficient condition (50–52), as it may simply arise as a result of
a shaping of nonconscious spontaneous activity by the preserved
anatomical connectivity matrix. Rather, our results points to the
importance of developing analytic tools to capture the dynamics
of brain activity (26–28) and tentatively suggests that entropy of
the state transition matrix, distance of each state to the underlying
anatomical connectivity matrix, and presence of negative links
may serve as useful candidate signatures of consciousness.

Materials and Methods
Animals. Three rhesus macaques (Macaca mulatta; one male and two females,
monkeys J, K, and R; 5–8 kg; 6–12 y of age) were included. All procedures were
conducted in accordance with the European convention for animal care (86-
406) and the National Institutes of Health’s Guide for the Care and Use of
Laboratory Animals. Animal studies were approved by the institutional Ethical
Committee (Comité d’Ethique en Expérimentation Animale Protocol 10–003).

fMRI Data Acquisition. Monkeys were scanned on a 3-T horizontal scanner
(Siemens Tim Trio;) with a single transmit-receiver surface coil built in our in-
stitution and customized to monkeys. Before each scanning session, the con-
trast agent monocrystalline iron oxide nanoparticle (MION, Feraheme; AMAG
Pharmaceuticals; 10 mg/kg, i.v.) was injected into the monkey’s saphenous vein
(53) (see SI Materials and Methods for details). Functional images were pre-
processed following the standard steps (SI Materials and Methods) and nor-
malized to the anatomical template of the monkey MNI space (54) and band-
pass filtered in the frequency range of interest (0.0025–0.05 Hz).

Anatomical Dataset and Connectivity Matrices. Anatomical data were derived
from the CoCoMac2.0 (29) database (cocomac.g-node.org) of axonal tract
tracing studies using the Regional Map parcellation (55). This parcellation
comprises 82 cortical ROIs (41 per hemisphere; Table S1).

We estimated both stationary and sliding window zero-lag covariance
matrices for each sedation condition c and session s (26). All subsequent
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analyses were performed on these connectivity matrices (SI Materials and
Methods). To explore whether our results could be explained by slower brain
dynamics under sedation, we conducted a lagged correlation analysis (Fig.
S6), shifting one of the time series by one or two time points (SI Materials
and Methods). We also explored whether our results could be replicated
using the same methods while replacing the covariance matrix with the
inverse covariance matrix (Fig. S7 and SI Materials and Methods).
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SI Materials and Methods
Propofol Anesthesia.
Administration. Monkeys were scanned in an awake resting con-
dition and under two different levels of propofol sedation:
moderate propofol sedation and deep propofol sedation (general
anesthesia) defined by the monkey sedation scale (Table S1) and
EEG. The monkeys were trained for i.v. propofol injection in the
awake condition (5–7.5 mg/kg i.v.; Fresenius Kabi) in the sa-
phenous vein for induction of sedation. Sedation was maintained
using a target controlled infusion (TCI) system (Alaris PK Sy-
ringe pump; CareFusion) based on the Paedfusor pharmacoki-
netic model (1) for propofol. The TCI of propofol was 3.7–4.5
μg/mL for the moderate propofol sedation condition and 5.8–6.5
μg/mL for the deep propofol sedation condition. Muscle blocking
agent (cisatracrium, 0.15 mg/kg bolus i.v., followed by continuous
i.v. infusion at a rate of 0.18 mg/kg/h; GlaxoSmithKline) was used
to avoid artifacts related to potential movements during moderate
propofol sedation. Under sedation, all monkeys were intubated
(Rüsch; Teleflex Medical; cuffed tube, internal diameter 4–4.5
mm) and mechanically ventilated (Aestiva/5 MRI; General
Electric Healthcare) (tidal volume: 8–10 mL/kg; respiration rate
of 23–31/min, end-tidal CO2 of 40–42 mmHg, FiO2 = 0.5).
Physiological monitoring included heart rate, noninvasive blood
pressure [systolic blood pressure, diastolic blood pressure, mean
blood pressure, oxygen saturation (SpO2), respiratory rate, end-
tidal CO2 (EtCO2), cutaneous temperature]. All physiological
parameters were recorded with a digital recording system
(Maglife; Schiller). i.v. hydration was ensured by a mixture of normal
saline (0.9%) and 5% glucose (250 mL of normal saline with 100
mL of 5% glucose) at a rate of 10 mL/kg/h. At the end of each
fMRI scanning session, anesthesia was stopped, and the animal
was monitored carefully during recovery. The animal was then
placed in individual housing and monitored until full recovery
from anesthesia.
Monitoring of anesthesia depth. We used both behavioral testing and
EEG (see EEG methods below and Table S1) to define the an-
esthesia depth. The levels of arousal were defined using theMonkey
Sedation scale, a clinical sedation scale that was adapted from the
Human Observer’s Assessment of Alertness/Sedation scale (2) and
a previously described monkey arousal scale (3). At each fMRI
session, the clinical score was determined at the beginning and the
end of the scanning session. The clinical scale is based on sponta-
neous movements and the response to different stimuli (juice
presentation, shaking/prodding, toe pinch) and corneal reflex (Ta-
ble S1). In awake condition, monkeys scored positive in all items
considered. Propofol monotonically caused negative responses to
stimulation and spontaneous activity. Under moderate sedation,
monkeys also stopped showing spontaneous movements while still
tended to respond to shaking/prodding. Finally, under deep seda-
tion monkeys stopped responding to all stimuli, reaching a state of
general anesthesia.
EEG acquisition and analysis. We acquired EEG scalp recordings
using a customized EEG cap (EasyCap, 13 channels), an MR
amplifier (BrainAmp; Brain Products), and the Vision Recorder
software (Brain Products). Parameters were as follow: sampling
rate, 5,000 per channel; impedance, <20 MΩ; band-pass filtered
0.01 Hz < f < 500 Hz during collection. We applied an EEG gel
to obtain low impedances (One Step EEG gel; Germany). To
check the anesthesia level, EEG scalp recordings were acquired
before entering the scanner room (10 min before starting MRI
acquisition). We performed an online analysis through visual
assessment of EEG traces. We interpreted the EEG traces vi-

sually and defined the EEG based levels of sedation for clinical
sedative level (Table S1). Levels of sedation were defined as
follow: level 1, awake condition, posterior alpha waves (eyes
closed) and anterior beta waves; level 2, light propofol sedation,
no fMRI data collection at this level, increasing of the amplitude
of alpha waves and anterior diffusion of alpha waves; level 3,
moderate propofol sedation, diffuse and wide alpha waves, and
anterior theta waves (4); level 4, deep propofol sedation (general
anesthesia), diffuse delta waves, waves of low amplitude (5, 6)
and anterior alpha waves (10 Hz) (7); level 5, very deep sedation
(deeper then level of general anesthesia), burst suppression (no
fMRI data collection at this sedation level).

fMRI Data Acquisition.Monkeys were scanned on a 3-T horizontal
scanner (Siemens Tim Trio) with a single transmit-receiver sur-
face coil built in our institution and customized to monkeys. Each
functional scan consisted of gradient-echoplanar whole-brain
images (TR, 2,400 ms; TE, 20 ms; and 1.5-mm3 voxel size; 500
brain volumes per session). For the awake condition, monkeys
were implanted with an MR-compatible headpost and trained to
sit in the sphinx position in a primate chair (8, 9). Monkeys sat in
the dark inside the MRI without any task. The eye position was
monitored at 120 Hz (Iscan Inc.). For the anesthesia sessions,
animals were positioned in a sphinx position in the MR scanner
and mechanically ventilated, and their physiological parameters
were monitored. Seventy-seven sessions were performed, divided
as follows: 21 awake sessions (monkey J: 16 sessions; monkey K:
5 sessions; monkey R: no awake session), 25 moderate propofol
sedation sessions (monkey J: 2 sessions; monkey K: 11 sessions;
monkey R: 12 sessions), and 31 deep propofol sedation sessions
(monkey J: 9 sessions; monkey K: 10 sessions; monkey R: 12
sessions).

fMRI Preprocessing. Functional images were slice-time corrected,
reoriented, realigned, and unwarped to correct for susceptibility-
by-movement interaction, resampled (1-mm isotropic), rigidly
coregistered to the anatomical template of the monkey MNI
space (10), and smoothed (Gaussian kernel, 3-mm full width at
half maximum) using FSL (www.fmrib.ox.ac.uk/fsl/) and custom
Python code (8). We also removed by regression the movement
parameters resulting from rigid body correction for head motion
(11), as well as the global signal. We regressed out global signal
from the images to rule out any confounding effect due to
physiological (e.g., respiratory and cardiac) changes associated to
propofol administration. Voxel time series were filtered with
high-pass (0.0025-Hz cutoff) and low-pass (0.05 Hz cutoff) filters
and with a zero-phase fast-Fourier (FFT) notch filter (0.03 Hz)
to remove an artifactual pure frequency present in all sessions.
Following a previous study (12), we normalized the variance of
each time series; thus, covariance matrices correspond to cor-
relation matrices.

Anatomical Dataset and Functional Atlas. Anatomical data were
derived from the CoCoMac2.0 (13) database (cocomac.g-node.
org) of axonal tract tracing studies using the Regional Map
parcellation (14). This parcellation comprises 82 cortical ROIs
(41 per hemisphere; Table S1). This anatomical connectivity
matrix included interhemispheric connections. All connections
were mirror-symmetrical across hemispheres. When information
about the connectivity between two regions was not available
in CoCoMac, the connection strength was set to 0 (15). The
CoCoMac connectivity matrix classifies the strength of the
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anatomical connections as weak, moderate or strong, codified as
1, 2, and 3, respectively. Following Shen et al. (15), when a de-
scription of strength was not provided, the connection strength
was set to moderate.
The Regional Map parcellation was drawn on the F99 macaque

standard cortical surface template (16, 17) and coregistered to
the MNI space. Brain renders were done using custom Matlab
scripts based on scripts by Gleg Begzin available at CoCoMac
2.0 webpage.

Stationary Connectivity Analysis. We estimated for each sedation
condition c and session s the covariance matrix Cc,s, to confirm
the presence of long-range stationary connections under awake
and anesthesia (18, 19). To this aim, for each ROI, a time series
was extracted for each session s, averaging all voxels within
a ROI at a given brain volume. The matrix entry Cc,s(i,j) in-
dicates the temporal correlation of the average fMRI signal of
ROIs i and j, which henceforth is referred as stationary func-
tional connectivity. We estimated covariance from the regular-
ized precision matrix (20). Following the graphical LASSO
method (21), we placed a penalty on the L1 norm of the pre-
cision matrix to promote sparsity [the regularization parameter
lambda (λ) was set to 0.1]. Through this method, we obtained
a connectivity matrix per sedation condition and session, sized
82 × 82, which was Fisher transformed before further analysis
as z= ar tanhðcÞ to obtain the Zc,s, matrix.
Fig. 1A shows the average of this matrix, Zc, one per sedation

condition (Fig. 1A). To test for statistical significance of con-
nectivity between brain regions in different sedation conditions,
Student t tests were performed with the null hypothesis of zero
correlation. To correct for the multiple comparisons, the false
discovery rate (FDR) method was used, with a P value of 0.0001.
To promote sparsity in the brain renders, we plotted into glass
brains all significant connections that also displayed absolute
connectivity strength higher than 0.3 (Fig. 1 B–D).
To characterize Zc,s matrices, we calculated for each sedation

condition c and session s the average of positive z-values of Zc,s
and also the rate between negative and positive z-values. We
assessed significant differences between sedation conditions
through a boostrapping method (22) as follows: we obtained for
every sedation condition and session the mean value of all pos-
itive connection of every ROI, as

Zc;Positive =
XN
i=1

Zposc;s
�
i; j
�

if i≠ j
N

;

where Zpos represents all z-values that are positive in a matrix
Zc,s and N is the total number of positive z-values. After calcu-
lating Zc;Positive, we subtracted the mean value of two condition
(for instance, Zawake;Positive − Zdeep;Positive), and called it the ob-
served difference between conditions. We calculated the null
distribution of Zc;Positive values differences between conditions
shuffling scanning sessions across conditions (thus, breaking
any possible dependence between sedation condition and con-
nectivity value) and repeated the subtraction analysis 100,000
times, obtaining a distribution of random mean z-values differ-
ences that approaches a Gaussian distribution. This distribution
is called null distribution and is the distribution of expected
differences under the hypothesis of no relation between sedation
condition and mean positive connectivity. If our observed differ-
ence in Zc;Positive is truly reflecting a difference between sedation
conditions, its value should be located on a tail of the null dis-
tribution. We fitted a Gaussian to the null distribution to obtain
a normalized Zc;Positive, by subtracting to the observed Zcondition
the mean value of the fitted Gaussian and dividing it by the SD
of the Gaussian distribution. We obtained the P value corre-
sponding to the normalized Zc;Positive as the cumulative probability

to the normalized observed difference in the normalized Gaussian
distribution. This procedure was used each time a bootstrap analysis
is performed in this work.
We also calculated for each condition c and each session s the

rate of negative to positive z-values to quantify changes in neg-
ative z-values across conditions, as

ratec;s =

PN
i=1

PN
j=1 abs

�
Zi;j

�jZi;j < 0
PN

i=1
PN

j=1 Zi;j jZi;j > 0
:

Dynamical Connectivity Analysis.
Dynamical connectivity matrices. We estimated the sliding window
covariance matrix Cc,s,w, for each sedation condition c, session s,
and time window w = 1....W (12). We computed covariance
matrices from windowed segments of the time series. We used
a Hamming window (width = 35 scans), sliding with steps of 1
scan, resulting in W = 464 windows per session. Because short
time segments may have insufficient information to characterize
the full covariance matrix, we estimated covariance from the
regularized precision matrix (20). As done for the stationary
analysis, we placed a penalty on the L1 norm of the precision
matrix to promote sparsity (the regularization parameter λ was
set to 0.1). This procedure resulted, for each condition c and
session s, in a 3D matrix Cc,s,w sized 82 × 82 × 464, which was
Fisher transformed (Zc,s,w) before further analysis.
Unsupervised clustering and brain states. To assess the structure of
reoccurring connectivity patterns, we applied the k-means clus-
tering algorithm (23) to Zc,s,w matrices, using the L1 distance
function (Manhattan distance), as implemented in Matlab
(MathWorks). Covariance values between all ROIs were in-
cluded, resulting in [82 × (82 − 1)]/2 = 3,321 features per matrix.
Before clustering, Zc,s,w matrices were subsampled along the
time dimension (w). Subsampling was performed to reduce re-
dundancy between windows (12). The sampled connectivity
matrices (Zexamplesc,s) were chosen as those windows with local
maxima in functional connectivity variance (those peaks where
the absolute normalized variance was higher than 0.5 SDs), re-
sulting in 9.6 ± 2.54 (mean ± SD) windows or examples per
session, for a total of 6,724 instances (samples from the Zc,s,w
matrix). The clustering algorithm was applied to the Zexamplesc,s
and was repeated 500 times to increase chances of escaping local
minima, with random initialization of centroid positions. The
resulting centroids or median clusters (called BSn with n = 1–7;
each BSn is sized 82 × 82) were then used to initialize a clustering
of all data, i.e., not only the examples but the entire Zc,s,w ma-
trices (77 fMRI sessions × 464 windows = 35,728 instances),
obtaining a matrix of brain states Bc,s,w, which, for a given se-
dation condition c and session s, is a vector of length 464, valued
1–7 (the predefined number of clusters), because each matrix in
Zs,p,w is assigned a BSn. The number of clusters k (or brain states)
was determined following ref. 12, although additional explor-
atory analyses varying k from 5 to 10 demonstrated consistent
and robust results over a large range of k (Fig. S1).
Similarity score and probability of each state. To investigate the de-
pendence of brain dynamics and sedation condition, we defined
a measure of similarity between anatomical connectivity as
provided by CoCoMac2.0 and functional connectivity, to rank all
brain states along this dimension. The similarity score was
computed by measuring the correlation coefficient between the
vectorized structural matrix (sized 6,724 × 1) and each vectorized
brain state or centroid from the clustering analysis (using the
Euclidean distance instead of correlation or only positive values
of the brain states to calculate the correlation, did not qualita-
tively changed the results; Fig. S3). Using the similarity score, we
ranked all brain states in ascending order of similarity to struc-
ture (Fig. 2 A and B).
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To calculate probability of occurrence of any brain state (Fig.
2D) we obtained, for each sedation condition c and each brain
state n, the percentage of occurrence as

Pc;n =

PN
i=1

�
Bc;s;i = n

�
N

;

in which n = 464. For each session, Pc adds up to 1. We calcu-
lated the SEM through a jackknife procedure (24), as follows: for
each sedation condition c, we repeated the estimation of prob-
ability of occurrence for every brain state n (Pc,n), N − 1 times
(N is the number of sessions within each sedation condition),
each time excluding a different session from the analysis; SEM
is then calculated as semc;x = sqrtðPc;nÞpðN − 1Þ.
To quantify the relation between probability of occurrence and

similarity score, we conducted, for each sedation condition,
a regression analysis, to quantify the beta value (β), the R2, and
a P value. Differences in brain state composition across vigilance
conditions were assessed through a fixed-effects ANOVA, with
mean rank similarity, that is, the result of averaging each brain
state time series, valued from 1 (the less similar to structure
brain state) to 7 (the more similar to structure brain state), as
a dependent variable and the vigilance condition as the in-
dependent variable. We also run a fixed effects ANOVA to
quantify the effect of sedation on the probability of brain state 7.
For this, we followed the same procedure, but the mean rank
similarity was calculated considering only the presence of brain
state 7 (window w valued at 1) or any other state (window w
valued at 0).
Topology and network properties of brain states. Fig. S2 shows several
views of the brain states ordered according to their similarity
score. Fig. S2A shows all connections, both positive and negative,
above a threshold of z = 0.5. Fig. S2B shows the top 400 links of
each brain state to explore the connectivity pattern dominating
in each vigilance condition. We see that brain state 1 shows
a clear characteristic pattern, with positive connections forming
a frontoparietal core and negative connections showing long-
range connections linking frontal and occipital regions. This
pattern changes along the similarity axis, and brain state 7
presents a much more diffuse pattern, lacking a central core of
positive connections. Fig. S2C shows the top 30 connected ROIs
for each brain state. ROI size codifies the normalized number of
connections. Fig. S2D shows the minimal energy plots of the
brain states: using the Kamada–Kawai algorithm (25), we em-
bedded the top 2,500 links of each brain state in the 2D plane.
Resulting graphs show that networks are qualitatively different:
brain states with low similarity score clearly show two sub-
components of the network, a subdivision that is completely lost
in brain state 7 (despite having equal number of links; Fig. 2D).
Fig. 2H shows the normalized probability distribution of z-

values for brain states 1 and 7, binning correlation values in 45 bins.
Fig. 2 I and J shows the 2D normalized histograms of the same
brain states z-values, as a function of distance between pairs of
ROIs. Distance was between ROIs was calculated as the L2 norm in
the 3D space, using MNI coordinates of CoCoMac as input.
Fig. 2K shows the four communities obtained from Shen et al.

(15). For every brain state n, we calculated the absolute average
correlation between all ROIs belonging to community i and all
ROIs belonging to community j. To observe inter- and intra-
community mean correlation along the similarity axis, we con-
ducted a regression, for every pair of communities, between the
absolute value of correlation and the similarity score (Fig. 2L).
We observe that, after Bonferroni correction, only correlations
between communities 3 and 4 and between communities 3 and 1
significantly diminished as a function of similarity to structure.
We set the P value at 0.05, Bonferroni corrected for multiple
comparisons (10 possible community combinations). We also

calculated for each brain state n the ratio intermodule vs. in-
tramodule correlations, and we conducted a regression between
this ratio and the similarity score (Fig. 2M).
We used a graph theory metric, Small World (SM) index, to

summarize topological information (26, 27) (Fig. 2N). Each BSn
matrix defines a weighted graph where each ROI corresponds to
a node and the weight of each link is determined by the z-value
between each ROI pair. To calculate SM index, BSn matrices
were converted to binary undirected matrices by applying a
threshold T. The arbitrary parameter T was chosen so that in all
cases the resulting networks had a link density of 0.10, i.e., 10% of
the total number of possible links in the networks were actually
present, to ensure that only the strongest links are present but
the network is not disaggregated into subcomponents (28) and
to normalize networks of different brain states by size to avoid
spurious effects on the metrics due to network size. On the
thresholded matrices, we calculated the clustering coefficient C
and the characteristic path length L using the Brain Connectivity
Toolbox (27). Combining the metrics C and L, we calculated the
SM index, as SM =C=L (29). To quantify changes in SM across
brain states, we conducted a regression analysis between the SM
index and the similarity score.
We also quantified the duration of each brain state (that is, the

average length of sequences of a given brain state in the Bc,s,w
matrix; Fig. 2O). For each sedation condition c and session s, we
computed the length of sequences composed by only one brain
state. To account for the random length duration, occurring
solely due to a brain state’s proportion (i.e., the more likely
a brain state is, the longer its sequence is expected to be), we
calculated a random distribution of sequence lengths by shuffling
the Bc,s,w 5,000 times along the time dimension. We then sub-
tracted from the observed lengths the average time expected by
frequency of each brain state. We quantified differences between
sedation states through a bootstrap procedure, as done before.
To investigate putative changes in long-range temporal cor-

relation (LRTC) and its relation with brain states, we estimated,
for every session s, the Hurst exponent (H) through detrended
fluctuation analysis (DFA) (30). DFA is a scaling analysis
method that can be used in nonstationary time sequences. For
each time series x of every session s, we subtracted its temporal
mean and calculated its cumulative sum as

Xt =
Xt

i=1

ðxi − < x>Þ;

where < x> stands for the temporal mean of the signal. The
cumulative signal Xt is divided into nonoverlapping windows of
length 10 samples. A linear trend is fitted to this windowed time
series using least squares, and then the signal is detrended by
subtracting the best linear fit, producing signal Yn. The root-
mean-square deviation (that is, the fluctuation of the signal) is
calculated from the detrended windowed time series, as

FL =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
�
L
XL
k=1

ðYk −YnÞ2
vuut :

Finally, the Hurst exponent is obtained by plotting in a log-log
graph FL against L. Through least squares, we obtained the slope
α of the relation between FL and L. Because α changes for large
values of FL and L, we estimated α using the first 15 time win-
dows (α1). We identified the Hurst exponent with α.
Fig. S5A shows H values for each ROI within the Kotter and

Wanke ROI set. Renders were done using custom scripts men-
tioned above. Fig. S5B shows H values for each session (averaged
across brain regions). To construct Fig. S5C, we calculated for
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each of the 77 functional sessions its average similarity score
index that is the average value of the similarity score of all BSn
with n = 1–7, within a given session. Fig. S5C plots the H value
for all 77 sessions as a function of the average similarity score
(color codifies vigilance condition of each session). To construct
Fig. S5D, we binned average similarity score into quintiles, av-
eraging H values within each quintile. Error bar represents 1 SE,
calculated using n = number of average brain values within each
quintile.
To explore the possibility that the changes observed under

sedation could be due to a slower brain dynamics, we conducted
a lagged correlation analysis. For this, we repeated our analyses
while introducing a time lag in the calculation of covariance
between ROIs i and j. For this, we shifted one of the time series
by either one or two samples relative to the other. In this way we
obtained a lagged correlation value between ROIs i and j. We
removed from the analysis the lagged correlation of a ROI with
itself, yielding a value different from 1 when introducing a time
lag. Fig. S6 shows these results. Fig. S6 A and B shows time-
averaged connectivity matrices for all conditions, for lag = 0 (a),
lag = 1 (c), and lag = 2 (e). To build those matrices, we averaged
all temporal windows from the dynamical analysis. For lag 0 we
obtained extremely similar results than using the graphical Lasso
covariance calculation (Fig. S6 A and B; lag 0: awake: β-value =
0.36; R2 = 0.13; P = 0.42; moderate: β-value = 0.53; R2 = 0.91;
P = 0.0008; deep: β-value = 0.422; R2 = 0.82; P = 0.005). We found
that introducing lags in the analysis did not affected our results,
nor did it for lag 1 (Fig. S6 C and D; awake: β-value = 0.43; R2 =
0.20; P = 0.30; moderate: β-value = 0.54; R2 = 0.92; P = 0.0005;
deep: β-value = 0.30; R2 = 0.85; P = 0.0031) or for lag 2 (Fig. S6

E and F; awake: β-value = 0.51; R2 = 0.39; P = 0.12; moderate:
β-value = 0.47; R2 = 0.87; P = 0.0018; deep: β-value = 0.40; R2 =
0.84; P = 0.0037). Furthermore, the dynamical repertoire seemed
to be even more depleted under sedation at larger lags, as brain
state 7, the most dominant under sedation and closest to structural
connectivity, became even more prominent during deep sedation
as the lag increased from 0 to 2 (Fig. S6G).
To explore the robustness of our results, we also repeated the

analysis using the inverse covariance matrix instead of the co-
variance matrix [as proposed by Allen et al. (12)]. We repeated
our analysis using exactly the same methods and parameters than
for covariance, mentioned above. It is known that sparsity-
inducing norms such as the one used by the graphical Lasso
model are not invariant under transformations such as trans-
lations and rotations (31). This invariance implies that distance
similarities among covariance matrices are not necessarily
translated into distance similarities among inverse covariance
matrices. Nevertheless, we found that, although the results were
noisier and less clear when using inverse covariance, they did not
qualitatively change. We were able to reproduce the main find-
ings: (i) modulation of brain state probability by similarity score
(this time only in the deep sedation condition); (ii) strong re-
duction of negative links (i.e., restricting the analysis to co-
variance links whose inverse covariance value is different from
zero) under sedation; and (iii) a shift of brain state probability as
a function of sedation: in the awake condition, dominant states
distant from structural connectivity are frequent, whereas under
deep sedation, the brain states closest to anatomical structure
dominate (Fig. S7B; β-value = 0.12; R2 = 0.74; P = 0.01).
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Fig. S1. Robustness of results with respect to the choice of a predefined number of brain states. To explore the dependence of results on the parameter k
(number of predefined brain states), we explored a broad range of values for k = [5, 6, 7, 8, 9, 10] (main text only shows results for k = 7, highlighted in this
figure). The relation between the probability of occurrence of a brain state and its similarity to the structural connectivity matrix for all sedation conditions
(columns A–C) and the probability distributions (column D) do not significantly change with k.
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Fig. S2. Brain renders for the seven brain states, showing (A) the strongest connections (absolute z-value > 0.05), (B) the strongest 400 connections, (C) the top
30 more connected ROIs, and (D) the minimal energy plots embedded in two dimensions, displaying their strongest 2,500 links embedded in the plane.
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Fig. S3. Robustness of results with respect to alternative methods for evaluating the similarity between functional and anatomical networks. (A) Relation
between probability of occurrence and similarity (Left) and probability distributions (Right) for a similarity score based on the Euclidean distance between
brain state matrices and structural matrix. Probability of occurrence is plotted against the distance to anatomy (defined as 1 − similarity) to maintain the
ascending slope on the curves for comparison. (B) Relation between probability of occurrence and similarity (Left) and probability distributions (Right) for
a similarity calculated including only positive functional connectivity values (all negative values set to zero). (C) Same as above but including only negative
correlations to calculate similarity (all positive correlations set to zero).
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Fig. S4. Binarized correlation matrices showing only positive connections between ROIs for the anatomical matrix and the seven brain states. Brain states 1–6
display connectivity patterns that closely resemble the structure found in awake stationary analysis. In brain state 7, all structure is lost and positive connections
spread all over the matrix, visually resembling the anatomical matrix.

Fig. S5. Hurst exponent and its relation to brain states. (A) Hurst exponent value (H) for all sessions and ROIs. (B) H value for all three conditions, averaged
across regions within each session. Error bars stand for SEM. (C) H value per session (for a total of 77 sessions) as a function of the mean similarity score. (D) H
values grouped into quintiles of mean similarity score.
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Fig. S6. Lagged-correlation analysis. (A, C, and E) Average connectivity matrices for all vigilance conditions, calculated by shifting the time series by zero (A),
one (C), or two (E) fMRI samples (i.e., 0, 2.4, or 4.8 s). (B, D, and F) Probability of occurrence of each brain state as a function of the similarity between
functional and structural connectivity for lag 0 (B), one (D), and two (F) conditions. (G) Probability of brain state 7, the dominant brain state under sedation, in
deep anesthesia for lag = 0, 1, 2.
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Fig. S7. Inverse covariance matrix and brain states. (A) Average inverse connectivity matrices for all vigilance conditions. Note that the color code is inverted
for comparison with covariance matrices. (B) Rate between negative and positive covariance values considering only those connections that are different from
zero in the corresponding inverse correlation matrix. (C) Probability distributions of brain states in the different vigilance conditions. Each bar represents the
within-condition probability of occurrence of a state. Error bars stand for 1 SE.

Table S1. Monkey sedation scale

Scale Arousal level Juice presentation Spontaneous movements Shaking/prodding Toe pinch Corneal reflex

1 Awake + + + + +
2 Moderate sedation − − +/− + +
3 Deep sedation/general anesthesia − − − − −

Juice presentation +, monkey reacts to juice presentation; spontaneous movements +, monkey moves spontaneously; shaking/prodding +, monkey has body
movement, eye blinking, eye opening, or cardiac rate change during shaking/prodding; toe pinch +, monkey has body movement, eye blinking, eye opening,
or cardiac rate change during toe pinching; corneal reflex +, monkey blinks eyes when cornea is stimulated.
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Table S2. Functional brain atlas and community structure

Awake Anterior cingulate, right
Primary auditory, left
Secondary somatosensory, right
Primary auditory, right
Anterior cingulate, left
Secondary somatosensory, left
Secondary auditory, right
Posterior cingulate, left
Posterior cingulate, right
Primary somatosensory, right
Ventrolateral prefrontal, right
Secondary auditory, left
Visual area 1, right
Primary somatosensory, left
Primary motor, right

Moderate sedation Primary motor, left
Primary motor, right
Primary somatosensory, left
Primary somatosensory, right
Primary auditory, left
Primary auditory, right
Medial premotor, right
Secondary somatosensory, left
Anterior cingulate, right
Medial premotor, left
Anterior cingulate, left
Secondary somatosensory, right
Dorsomedial prefrontal, left
Posterior cingulate, left
Secondary auditory, right

Deep sedation Medial premotor, left
Anterior cingulate, left
Primary auditory, left
Anterior cingulate, right
Secondary sensorimotor, left
Medial premotor, right
Primary sensorimotor, left
Primary motor, left
Secondary somatosensory, right
Primary auditory, right
Secondary auditory, right
Dorsomedial prefrontal, left
Posterior cingulate, left
Secondary auditory, left
Primary motor, right

Labels corresponding to the 82 ROIs of the Kotter and Wanke brain atlas
and their module membership. Labels correspond to the ROIs in the left
hemisphere; right hemisphere is equally ordered and has an almost equiva-
lent module membership.
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Table S3. Top 15 ROIs with the highest average absolute value
covariance in the stationary analysis

ROI label Module

Tempolar polar 1
Superior temporal 2
Amygdala 1
Orbito Inferior prefrontal 2
Anterior insula 2
Orbitomedial prefrontal 1
Central temporal 4
Orbitomedial prefrontal 1
Inferior temporal 4
Parahippocampal 4
Gustatory 2
Ventrolateral prefrontal 2
Anterior visual area 4
Posterior insula 2
Polar prefrontal 1
Hippocampus 4
Subgenual cingulate 1
Ventrolateral prefrontal 2
Visual area 2 4
Medial prefrontal 1
Ventral temporal 4
Dorsal anterior visual area 3
Visual area 1 4
Centrolateral prefrontal 1
Secondary auditory 2
Retrosplenial cingulate 4
Posterior cingulate 2
Anterior cingulate 1
Secondary somatosensory 2
Primary somatosensory 3
Primary auditory 2
Primary motor 3
Inferior parietal 3
Medial parietal 3
Dorsomedial prefrontal 1
Intraparietal 3
Superior parietal 3
Frontal eye field 3
Dorsolateral prefrontal 1
Medial premotor 3
Dorsolateral premotor 3
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Movie S1. Dynamical connectivity matrix for the example fMRI session shown in Fig. 1G. Brain render shows the strongest connections (absolute z value
higher than 1); red lines mark positive correlations, and blue lines mark negative correlations.

Movie S1
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