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Abstract 

Social feedback can selectively enhance learning in diverse domains. Relevant neurocognitive 

mechanisms have been studied mainly in healthy persons, yielding correlational findings. 

Neurodegenerative lesion models, coupled with multimodal brain measures, can complement 

standard approaches by revealing direct multidimensional correlates of the phenomenon. To 

this end, we assessed socially reinforced and non-socially reinforced learning in 40 healthy 

participants as well as persons with behavioral variant frontotemporal dementia (n = 21), 

Parkinson’s disease (n = 31), and Alzheimer’s disease (n = 20). These conditions are typified 

by predominant deficits in social cognition, feedback-based learning, and associative learning 

respectively, although all three domains may be partly compromised in the other conditions. 

We combined a validated behavioral task with ongoing electroencephalographic (EEG) 

signatures of implicit learning (medial frontal negativity) and offline magnetic resonance 

imaging (MRI) measures (voxel-based morphometry). In healthy participants, learning was 

facilitated by social feedback relative to non-social feedback. In comparison with controls, this 

effect was specifically impaired in behavioral variant frontotemporal dementia and Parkinson’s 

disease, while unspecific learning deficits (across social and non-social conditions) were 

observed in Alzheimer’s disease. EEG results showed increased medial frontal negativity in 

healthy controls during social feedback and learning. Such a modulation was selectively 

disrupted in behavioral variant frontotemporal dementia. Neuroanatomical results revealed 

extended temporo-parietal and fronto-limbic correlates of socially reinforced learning, with 

specific temporo-parietal associations in behavioral variant frontotemporal dementia, and 

predominantly fronto-limbic regions in Alzheimer’s disease. In contrast, non-socially 

reinforced learning was consistently linked to medial temporal/hippocampal regions. No 

associations with cortical volume were found in Parkinson’s disease. Results are consistent 
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with core social deficits in behavioral variant frontotemporal dementia, subtle disruptions in 

ongoing feedback-mechanisms and social processes in Parkinson’s disease, and generalized 

learning alterations in Alzheimer’s disease. This multimodal approach highlights the impact of 

different neurodegenerative profiles on learning and social feedback. Our findings inform a 

promising theoretical and clinical agenda in the fields of social learning, socially-reinforced 

learning and neurodegeneration.
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software v.12; SnPM = statistical non-parametric mapping; SRL = socially reinforced learning; 

VBM = voxel-based morphometry

Introduction 

Social reinforcement is a powerful facilitator of learning,1-4 especially relative to non-social 

feedback.5-10 Contextual interpersonal cues like facial emotional expressions11, 12 promote 

associative learning10, 13 by engaging emotional arousal and reward/punishment mechanisms. 
14-16 According to the social-context network model, these integrative processes implicate a 

broad fronto-insulo-temporal network,17-22 with socially reinforced learning (SRL) depending 

critically on temporo-parietal hubs, and secondarily on fronto-limbic hubs, both related to 

context-target associative learning and social cognition.20, 21, 23-27 However, most evidence 

comes from healthy individuals, offering limited (correlational) information to identify critical 

neural signatures. The neurodegenerative lesion model approach partially overcomes these 

limitations by revealing direct links between affected brain mechanisms and behavioral 

performance.28-32 Yet, while some works have examined social vs. non-social learning in 

neurodegenerative diseases33, 34 (Table 1), and others have addressed SRL through 

neurophysiological methods,25, 26, 35 no study has integrated both approaches – let alone with a 

multimodal framework. Here, we examined behavioral, electroencephalographic (EEG) and 

structural neuroimaging correlates of a SRL paradigm in healthy controls (HCs) as well as 

people with behavioral variant frontotemporal dementia (bvFTD), Parkinson’s disease (PD), 

and Alzheimer’s disease (AD), typified by predominant deficits in social cognition, feedback-

based learning, and associative learning, respectively.

Preliminary psychophysiological evidence (behavioral and EEG studies) points to different 

patterns of disturbance across neurodegenerative subtypes. In bvFTD, impaired processing of 

socially relevant information36, 37 is particularly evident in associative learning tasks.33, 36 Such 

deficits have been linked to disruptions of social reward processing36, 38 and contextual 

integration skills.18, 39, 40 In PD, although impaired feedback-based learning has been 

reported,41-43 no study has compared performance in social and non-social feedback conditions, 

despite reported socioemotional disturbances in this disease.44-46 In AD, although 
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socioemotional functions usually remain partially intact in mild-moderate stages,47, 48 facial 

cues do not enhance associative learning33, 36 – but see.34 Altogether, beyond reported 

overlapping disruptions in memory and social cognition domains across neurodegenerative 

conditions,47, 49-51 behavioral evidence points to predominately socio-contextual learning 

impairments in bvFTD, implicit learning and socioemotional disturbances in PD, and general 

learning deficits in AD. Finally, EEG evidence of SRL is limited in neurodegenerative 

conditions. While social processing impairments have been related to diminished frontal EEG 

activity in bvFTD,40 no previous work has associated SRL with ongoing EEG activity in other 

neurodegenerative diseases.

Neuroimaging evidence of SRL is also scant. In bvFTD, social learning impairments have been 

related to orbitofrontal and temporal grey matter (GM) atrophy.36 With regards to PD, although 

a link between feedback-based learning impairments and cortico-striatal dysfunctions has been 

assumed,41, 43 no previous work has directly examined structural associations with SRL in this 

group. Finally, in AD, disrupted social enhancement in associative learning has been related to 

medial temporal and parietal atrophy.6, 36, 52

Although social and feedback-based learning have been separately assessed in in bvFTD, PD 

and AD (Table 1), no previous work has jointly addressed SRL in neurodegenerative models 

that differentially impact social cognition, feedback-based learning, and general associative 

learning. To our knowledge, this is the first feedback-based associative learning study 

combining social and non-social cues in neurodegeneration. Moreover, no previous work has 

targeted SRL/NSRL while tracking ongoing EEG correlates in different neurodegenerative 

groups- let alone in a multidimensional approach combining behavioral, EEG and 

neuroimaging. 

Our approach enables the joint assessment of feedback-related mechanisms across behavioral, 

neurophysiological, and neuroanatomical dimensions. We adapted an associative learning 

paradigm, previously reported with healthy participants,10 that evaluates how social and non-

social feedback impacts implicit learning of an arbitrary association between two stimulus 

types. Specifically, the task requires participants to judge the category membership (‘A’ or ‘B’) 

of repeatedly presented three-digit numbers, and learn (across different cycles) the correct 

association upon receiving feedback via socioemotional facial expressions (SRL) or colored 

circles (NSRL) after each number-category judgment. Learning is indexed by increased 
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accuracy and/or response time across cycles. High-density EEG allowed tracking ongoing 

markers of feedback-based learning via medial frontal negativity (MFN) modulations,53-55 a 

group of event-related potentials (error-related negativity, feedback-related negativity, and N2) 

sensitive to cognitive demands and strategic on-the-fly adjustments.54, 55 Specifically, larger 

MFN is predictive of enhanced learning by feedback53, 56, 57 Moreover, magnetic resonance 

imaging (MRI) recordings were obtained offline to investigate neuroanatomical correlates of 

SRL.

In HCs, we predicted enhanced performance across the task (final > initial trials), with better 

performance after social relative to non-social feedback (SRL > NSRL).10, 13 Similarly, we 

expected that both effects would be associated with larger MFN.53, 56-58 Also, in line with the 

social-context network model, we predicted that SRL performance would be related with 

extended temporo-posterior (and, to a lesser degree, frontal) regions involved in socio-

contextual processing and learning.20, 21, 24, 25 Conversely, we anticipated that NSRL would be 

associated with regions underpinning associative learning (i.e., hippocampal and medial 

temporal lobe structures).6, 59

Furthermore, in comparison with controls, distinct SRL disruptions were predicted for each 

neurodegenerative group. In bvFTD, due to its well-known social processing impairments, we 

expected reduced social-feedback facilitation on behavioral performance, alongside 

diminished MFN modulations for SRL relative to NSRL, as well as brain-behavior associations 

across temporo-posterior regions in (impaired) SRL and hippocampal regions in (preserved) 

NSRL. In PD, considering prominent feedback-related learning and socioemotional 

disturbances, we predicted behavioral SRL deficits and impaired MFN modulations during 

final trials. Regarding AD, we hypothesized behavioral impairments in both feedback 

conditions (SRL and NSRL), along with diminished MFN modulations during final trials (in 

contrast to HCs), resembling generalized learning deficits, associated with temporo-posterior 

atrophy. By jointly testing these hypotheses, we aim to provide convergent multimodal 

evidence of SRL disruptions across neurodegenerative diseases.

Materials and methods
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Participants 
The study comprised 112 participants: 40 HCs with preserved cognition and no history of 

neuropsychiatric diseases and/or substance abuse; 21 people fulfilling revised criteria for 

bvFTD60; 31 people with PD diagnosed in accordance with the United Kingdom PD Society 

Brain Bank criteria61; and 20 people with AD, each fulfilling the international NINCDS-

ADRDA criteria.62, 63 Power analyses confirmed the adequacy of our sample size 

(Supplementary Material 1.1). Participants were recruited from three international clinics 

taking part in the Multi-Partner Consortium to Expand Dementia Research in Latin America 

(ReDLat)64, 65 and assessed following harmonized procedures64, 65 as in previous works.32, 40, 66-

70 Clinical diagnoses were established by neurodegenerative disease experts through an 

extensive neurological, neuropsychiatric, and neuropsychological examination comprising 

semi-structured interviews and standardized cognitive and functional assessments (Table 2, 

Supplementary Material 1.2). All participants with neurodegenerative conditions were in 

early/mild stages of the disease and did not fulfill criteria for other neurological disorders or 

specific psychiatric conditions. Neither did they present primary language deficits or a history 

of substance abuse. Participants with bvFTD were functionally impaired and exhibited 

prominent changes in personality and social behavior, as verified by caregivers. Participants 

with PD were medicated with antiparkinsonian therapy and evaluated during “on” phase. 

Participants with AD were also functionally impaired as verified by caregivers. Each 

neurodegenerative sample was comparable in sex, age, and years of formal education with 

HCs. The only significant difference in sex between bvFTD and HCs (Table 2) was controlled 

in all subsequent analyses. Finally, whole-brain GM was compared between each 

neurodegenerative group and HCs, showing a predominantly orbitofronto-cingulate-temporal 

atrophy in bvFTD18, 71, 72, no atrophy in PD,73-75 and extended bilateral temporal with less 

extended fronto-parietal atrophy in AD76-78 (Supplementary Material 1.3; Supplementary 

Fig. 1). The institutional ethics committee of each recruitment center approved the study 

protocol. All participants provided signed informed consent in accordance with the Declaration 

of Helsinki. 

Experimental protocol
All participants completed a multimodal assessment protocol including a behavioral SRL 

assessment, ongoing high-density EEG recordings, and an MRI session.
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Behavioral data: Socially reinforced learning task
We adapted an SRL task validated in a behavioral study with healthy persons.10 By pressing 

predefined keys, participants were asked to judge the category membership “A” or “B” of 

three-digit numbers presented repeatedly across six cycles on a computer screen. Visual 

feedback immediately followed each number-category judgement (Fig. 1A). Participants were 

informed that there was no underlying rule defining the category membership of each number. 

Knowledge of the correct or incorrect outcome of previous category judgments for a particular 

number served to enhance performance over subsequent cycles. The task comprised two 

feedback conditions. In the SRL condition, socioemotional feedback was given a single face 

with one smiling and one angry expression for correct and incorrect responses, respectively.10 

The faces’ gender matched the participant’s gender. In the NSRL condition, feedback was 

given via green and red circles displayed for correct and incorrect responses, respectively. At 

the end of the experiment, participants were explicitly asked about the valence of each feedback 

type (Table 3). All groups presented adequate comprehension of these two factors (with no 

significant differences; for details see Supplementary Material 2.1). Each trial consisted of 

an initial stimulus (a three-digit number) presented in white color over a black background for 

1500 ms, followed by a black screen (1000 ms) and then by categories’ options (“A” and “B”) 

positioned to the left and right of the screen over left/right arrows respectively. Participants had 

to respond by choosing a letter through the corresponding computer keyboard arrows with their 

dominant hand. Afterwards, another black screen was shown for a random period (between 

2000 and 2500 ms). Finally, social or non-social feedback was provided for 1000 ms. 

Instructions and a set of two practice trials were presented before each block. The order of 

SRL/NSRL blocks alternated, with the first being social for half of the participants. Categories 

A or B were counterbalanced in a pseudorandom design across blocks. In total, participants 

completed six blocks (three SRL, three NSRL). Four different three-digit numbers (four trials) 

were repeated across six cycles per block. In total, 24 different numerical stimuli and 144 trials 

were run per subject. The number of trials did not change according to performance. For further 

details on the task design see Supplementary Material 2.2. Accuracy and response time data 

were collected for each trial. During the whole task, high-density EEG recordings were 

obtained to assess potential electrophysiological differences between SRL and NSRL 

modulations across groups (see below).
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EEG: Acquisition and signal preprocessing
Signals were acquired, for all participants, with a Biosemi Active-two 128 channel system at 

1024 Hz. Data was re-referenced offline separately to linked mastoid electrodes, resampled at 

512 Hz and filtered at 0.5-50 μV. Eye movements or blink artifacts were corrected with 

independent component analysis79 and with a visual inspection protocol.30, 32, 80-87 Noisy epochs 

were rejected using an automatic EEGLAB procedure. Criteria for exclusion included 

elimination of trials which exceeded a threshold of 2.5 SDs from the mean probability 

distribution calculated from all trials and by measuring the kurtosis of probability distribution.88 

The percentage of rejected trials was similar across groups and conditions (Supplementary 

Table 5.1 and Supplementary Table 5.2). EEG data was segmented into one-second epochs 

and baseline-corrected (-200 to 0 ms) for the feedback stimuli.

Neuroimaging: Acquisition and preprocessing
MRI acquisition and pre-processing steps are reported as recommended by the Organization 

for Human Brain Mapping89, 90 Acquisition parameters in each center followed standard 

protocols30, 32, 91 (Supplementary Material 6.1). For neuroanatomical analysis, whole-brain 

T1-rapid anatomical three-dimensional gradient echo volumes were acquired. Sixteen three-

dimensional volumetric images (from six HCs, three bvFTD, five PD and two AD participants) 

were excluded due to missing or artifactual data. The resulting subsamples were 

demographically matched in age and years of formal education. However, as regards sex, a 

significant difference was observed between bvFTD and HCs (Supplementary Table 6.2). 

These differences were controlled in the statistical analyses (see ’Statistical analysis’ section).

For voxel-based morphometry (VBM) analysis, data were processed on the DARTEL Toolbox 

following validated procedures30, 66, 92 via Statistical Parametric Mapping software (SPM12, 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). T1-weighted images in native space were 

first segmented using the default parameters of the SPM12 (bias regularization was set to 0.001 

and bias FWHM was set to 60-mm cut-off) into GM, white matter, and cerebrospinal fluid 

(these three tissues were used to estimate the total intracranial volume; TIV). DARTEL (create 

template) module was run later using the GM and white matter segmented images –following 
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SPM12 default parameters– to create a template that is generated from the complete data set 

(increasing the accuracy of inter-subject alignment).93 Next, we used the “Normalize to MNI 

Space” module from DARTEL Tools to affine register the last template from the previous step 

into the MNI Space. This transformation was applied to all the individual GM segmented scans 

to also be brought into standard space. Subsequently, all images were modulated to correct 

volume changes by Jacobian determinants, and to avoid bias in the intensity of an area due to 

its expansion during warping. Finally, data were smoothed using a 10-mm full-width-at-half-

maximum isotropic Gaussian kernel to accommodate for inter-subject differences in anatomy. 

The size of the kernel was selected based on previous recommendations.92, 94

To analyze the images of each center together and avoid a scanner effect in our results, the 

normalized and smoothed DARTEL outputs were transformed to w-score images.95-99 W-

scores, similar to z-scores (mean = 0, SD = 1), represent the degree to which the observed GM 

volume in each voxel is higher or lower (positive or negative w-score) than expected, based on 

an individuals’ global composite score adjusted for specific covariates (age, disease, TIV and 

scanner type). W-scores were calculated dividing each participant’s observed and predicted 

GM volume (residuals) by their SD. The resulting w-score maps of each subject were used for 

further statistical analyses. 

Statistical analysis

Behavioral analysis: Socially reinforced learning task

First, we discarded trials with response latencies above 10 s (for details see Supplementary 

Material 3.1). Second, we excluded trials whose response time fell more than 3 SDs away from 

each subject’s mean.100 The percentage of rejected trials was similar across groups and 

conditions (Supplementary Table 3.2). To validate the results in HCs, accuracy scores (the 

number of correct responses per cycle and per feedback condition) were calculated for each 

subject. To confirm the expected effect of learning (higher accuracy over successive cycles) 

and feedback type (higher accuracy in SRL than in NSRL condition) in HCs, we analyzed their 

performance through repeated measures ANOVA of accuracy scores across cycles and 

feedback condition. A Shapiro-Wilk test for normality on HCs accuracy evidenced normal 

distribution (Supplementary Material 3.3).
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For each subject, we computed a learning index calculated as the Rho value of the Spearman 

correlation between accuracy and cycle number.101-103 We obtained one learning index for each 

SRL and NSRL condition. This measure integrates the accuracy-by-cycle interaction in a slope 

index, allowing us to compare the learning process between conditions.101 Performance was 

compared between feedback conditions via a one-way ANOVA for the learning index in HCs. 

Next, the following procedure was designed to compare HCs and patients. To compare 

behavioral performance between groups, as normality and homoscedasticity assumptions were 

not fully met (Supplementary Material 3.3 and Supplementary Material 3.4), 

nonparametric Kruskal-Wallis tests were conducted for the learning index (with two-tail Mann-

Whitney-U tests for post hoc comparisons). As in previous reports with neurodegenerative 

diseases,30, 32, 104-106 since our hypotheses hinged on differences between each 

neurodegenerative group and HCs, and given that demographic and behavioral features were 

not matched across neurodegenerative samples (bvFTD vs PD vs AD), we focused on pairwise 

comparisons between demographically matched tandems: HCs vs bvFTD, HCs vs PD, HCs vs 

AD (Table 2). In addition, given that a significant difference was found in sex between bvFTD 

and HCs, we conducted additional group comparison analyses of covariance using permutation 

testing controlling for sex107 (Supplementary Material 3.5). Moreover, to rule out potential 

confounds of facial emotion recognition disturbances in bvFTD (particularly, for negative 

emotions),108, 109 we also conducted additional group comparison analyses of covariance using 

permutation testing and controlling for feedback valence recognition (Supplementary 

Material 3.6). Finally, we carried out modified t tests110 to estimate the percentage of impaired 

learning indexes in participants with neurodegenerative disease in contrast to HCs. This 

analysis allows to assess the percentage of cases that met criteria for dissociation between SRL 

and NSRL conditions (see Supplementary Material 3.7 for details).

EEG: Spatiotemporal clustering associated to feedback
To track ongoing markers of learning by feedback we targeted the MFN, characterized by a 

negative deflection over the midline frontal region of the scalp.53-55 Here, we aimed to analyze 

the potential differences in MFN modulations of SRL vs. NSRL by comparing the 

spatiotemporal cluster for both feedback conditions for each group. Also, in order to asses early 
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vs. late learning modulation effects of ongoing MFN markers, we included an additional 

measure (initial vs. final set of trials), as previously done.111 We compared the initial (first half) 

versus final (second half) set of trials per cycle of the social condition within each group. We 

used a split analysis applying the same MFN approach as it represents a direct measure of 

learning by feedback. The learning index is a dimensional measure of the slope of the 

behavioral correlation, and it does not directly represent an association with the MFN 

modulation by feedback. This way, we avoided problems related to (a) the Rho not being 

univariate, (b) inflating the number of comparisons between time points and electrodes due to 

single-trial analysis in a regression, and (c) controversial single-trial association between 

performance and ERP given the high level of noise,112 as signal averaging approaches are less 

affected by artifacts and noise-related variability.113 Given these considerations, and following 

similar approaches performed with the MFN111, 114 and other ERPs,115, 116 we evaluated the 

learning effects using a MFN split analysis. 

To avoid a priori spatiotemporal bias, nonparametric data-driven spatiotemporal clustering117 

was implemented on Matlab software with the Fieldtrip Toolbox (version 20180313), with one-

tailed paired t-tests as univariate tests. This nonparametric clustering method was introduced 

to address the resulting multiple comparisons problem.118 The t-values of adjacent 

spatiotemporal points with P < 0.05 were clustered together by summating their t-values, and 

the largest cluster was retained. A minimum of 10 neighboring electrodes were required to pass 

this threshold and form a robust cluster.119 The cluster-level t-value was calculated as the sum 

of the individual t-values at the points within the cluster. To assess the significance of a 

spatiotemporal cluster identified above, this procedure was repeated 5000 times, with 

recombination and randomized resampling of the subject-wise averages before each repetition 

using a Monte Carlo method.120 After each repetition, the t-value of the largest cluster identified 

was retained. The proportion of these 5000 randomized t-values greater than the originally 

identified cluster-level t-value was used to calculate a nonparametric P value for the originally 

identified cluster. This approach avoids the problem of multiple comparisons across the 

dimensions of electrode, time, and space.117, 119

Neuroimaging: VBM analysis
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Regression analyses were performed to assess the association between GM volume and 

behavioral performance (SRL and NSRL learning indexes) via non-parametric permutation 

tests on Statistical non-parametric Mapping (SnPM13, 

http://www.nisox.org/Software/SnPM13/, 5000 random permutations, cluster-forming 

threshold set at 0.001) toolbox for SPM12. Permutation tests outperform parametric tests in 

correction for multiple comparisons.121 Sex was included as a covariate of no interest. In order 

to increase behavioral variance and statistical power by increasing sample size,39, 122-124 we 

used two approaches collapsing different groups. First, we performed analyses including all 

four groups (HCs, bvFTD, PD and AD), to assess a general association between brain correlates 

of performance. Second, each pathological group was analyzed in tandem with healthy controls 

(bvFTD-HCs, PD-HCs, and AD-HCs) to evaluate specific performance-related 

neuroanatomical correlates, following recent neurodegenerative studies.30, 32, 125-128 To adjust 

for multiple comparisons, we used cluster-wise inference with family-wise error (FWE) rate 

correction of P-FWE < 0.05.129, 130 Finally, a conjunction analysis was performed in order to 

assess the extent of shared/distinct neural correlates of SRL and NSRL conditions. We used 

Imcalc in SPM12, to assess the conjoint analysis of grey matter volume and the two learning 

indexes in all groups together with corrected thresholded maps (P-FWE < 0.05). The binarized 

images were used to obtain a conjunction map using the equation: i1 + (2*i2).131, 132

Data availability
Anonymized data that support the study findings are available in open-source software133 or 

from the corresponding author upon reasonable request.

Results

Behavioral results
In HCs, accuracy improved across cycles, even when assessing SRL and NSRL conditions 

separately. Moreover, accuracy was higher in the SRL than in the NSRL condition (Fig. 1B 

and Supplementary Material 4). In this line, performance was also compared between 

feedback conditions for the learning index, revealing a significant difference between SRL 
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(mean = 0.47, SD = 0.36) and NSRL (mean = 0.21, SD = 0.46) feedback conditions (F(1,39) = 

8.49, P = 0.005, ηp2 = 0.17) (Fig. 1B) in HCs. 

Moreover, the learning index was used to assess between-group comparisons. A significant 

main effect of group was observed for the learning index in SRL and in NSRL conditions 

(Table 4). 

When comparing the learning index between each neurodegenerative sample and HCs 

separately, we found that participants with bvFTD performed significantly worse in the SRL 

condition, but not in NSRL condition. The same pattern was observed in participants with PD. 

Finally, AD showed impaired learning in both conditions relative to HCs (Table 4 and Fig. 

1C). Behavioral results were replicated when controlling for sex (see Supplementary 

Material 3.5 for details) and valence recognition (see Supplementary Material 3.6 for 

details).

EEG results: Spatiotemporal clusters of MFN
Significant spatiotemporal clusters were observed for the SRL vs NSRL comparison in all 

groups. As expected, HCs showed MFN modulation in a significant frontal cluster (t-sum = -

37180.09, P = 0.001), with more negative modulation during the SRL than the NSRL condition. 

Participants with bvFTD presented no frontal modulation by condition, but they exhibited a 

small significant posterior (occipital) cluster (t-sum= -4700.34, P = 0.003) with more negative 

voltage during social condition and maximum t-value soon after stimulus onset (170 ms). 

Conversely, the PD group exhibited a significant frontal cluster (t-sum = -87355.85, P = 0.001) 

in the same direction as HCs, with maximum t-value at 334 ms. The AD group also showed a 

significant frontal cluster (t-sum = -30859.08, P = 0.004), with more negative voltage for the 

SRL condition and its maximum t-value at 412 ms (Fig. 2A).

Concerning the effect of learning at neural levels across task cycles, the comparison between 

initial and final set during the SRL condition was significant for HCs (t-sum = -6990.78, P = 

0.036), with its maximum t-value at 246 ms, and with an expected more negative voltage 

(associated with enhanced learning) for the final trials in frontal regions. This effect was not 

observed in any neurodegenerative group (Fig. 2B).
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Neuroimaging results: Brain-behavior associations
When considering all groups, higher performance in SRL was associated with greater volume 

of temporo-parietal cortices (right superior temporal, supramarginal and postcentral), fronto-

limbic regions (right inferior frontal operculum, fusiform, and parahippocampal areas; left 

insula and precentral; bilateral thalamus, and middle cingulate areas), and bilateral middle 

occipital areas (Fig. 3, first row left, Supplementary Table 6.3). Contrarily, higher NSRL 

performance was associated with greater GM volume of the bilateral hippocampus (Fig. 3, first 

row right, Supplementary Table 6.4).

In the bvFTD group, significant associations emerged between higher performance in SRL and 

greater volume of predominantly temporo-parietal regions were found (including left superior 

and middle temporal, bilateral precuneus, fusiform and inferior posterior areas) (Fig. 3, second 

row left, Supplementary Table 6.3). NSRL was associated with greater volume of the right 

hippocampus and the middle temporal pole (Fig. 3 second row right, Supplementary Table 

6.4). 

In the PD group, no significant associations between GM volume and performance were found. 

In the AD group showed associations between higher SRL performance and greater GM 

volume of predominantly limbic regions (right inferior and superior orbitofrontal, anterior 

cingulate and hippocampus; left precentral, inferior frontal operculum, insula, middle temporal; 

and bilateral fusiform - Fig. 3, third row left, Supplementary Table 6.3). NSRL was 

associated with greater right hippocampus and middle temporal pole GM volume (Fig. 3, third 

row right, Supplementary Table 6.4).

Finally, conjunction analysis of SRL and NSRL conditions (Fig. 4) in all groups revealed small 

overlapping clusters in the right parahippocampus (peak MNI coordinate: x = 22.5; y = -22.5; 

z = -15; k = 292) and right hypothalamus (peak MNI coordinate: x = 15; y = -4.5; z = -10.5; k 

= 224).

Discussion
We investigated multimodal markers of SRL and NSRL across healthy participants and 

neurodegenerative diseases. As expected, social feedback enhanced learning in HCs. This 

effect was specifically impaired in bvFTD and PD, while AD presented generalized learning 
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disruptions. HCs showed the expected pattern of increased MFN modulation during SRL 

compared to NSRL. This effect was not observed in bvFTD. For SRL learning effects 

(comparing initial and final cycles of the task), HCs exhibited greater MFN modulation for 

final trials. This MFN differentiation was not seen in any neurodegenerative group. 

Neuroanatomical correlates of SRL showed extended temporo-parietal and fronto-limbic hubs 

in all groups, as well as associations with specific temporo-parietal regions in bvFTD, and 

predominantly fronto-limbic regions in AD. In contrast, NSRL was consistently linked to 

medial temporal regions and in particular with hippocampus. No association between task 

performance and brain atrophy was observed in PD. Together, these multimodal findings reveal 

mechanisms of learning and social feedback in SRL across different pathophysiological lesion 

models sensitive to SRL (bvFTD and PD) and generalized learning deficits (AD). 

Behavioral social-feedback facilitation and neurodegenerative 

profiles
The learning gains of HCs following social feedback10, 13 were disrupted in bvFTD and PD (in 

their corresponding comparison with controls). While learning from non-social feedback 

appeared generally unimpaired in these groups in comparison with controls, the addition of 

social feedback did not enhance learning. This suggests social cognition deficits impair 

learning in both diseases,40, 44 but based on the existing literature, coupled with our novel 

multimodal imaging findings, there is reason to suspect these deficits may arise from different 

cognitive processes. In bvFTD, primary social cognitive deficits18, 36-38, 40 may prevent the 

integration of social information during decision-making processes, disrupting associative 

learning.33, 36 This might mirror the way that memory impairments in bvFTD47, 51, 124, 134, 135 are 

thought to be explained (in this task) by social cognition deficits. Interestingly, in PD, the 

interaction of feedback-based learning41 and socioemotional deficits44 (particularly facial 

processing)46 may explain this group’ selective SRL disruptions. These potential explanations 

of behavioral deficits pointing to different physiopathological processes seems to be supported 

by their brain temporal and spatial signatures (see below). In contrast to these diseases, the 

generalized impairments across both feedback conditions observed in AD are likely explained 

by domain-general associative learning decline136 and object memory alterations.137, 138 Both 

processes may prevent the integration and maintenance of relevant feedback information. 
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Altogether, behavioral findings parallel clinical patterns of social (bvFTD and PD) and 

associative learning (AD) disruptions.

Ongoing cortical correlates of SRL as bvFTD specific markers 
Online MFN modulations evidenced both correlates of learning53, 56, 57 and social-feedback 

facilitation in HCs58, 139, 140 (but see).35 The selective abolishment on social MFN modulations 

in bvFTD in comparison with controls, beyond preserved low-level distinction of facial 

stimulus processing (posterior cluster resembling learning-unrelated N170),141 may be 

indicative of specific alterations in social prediction-error signal coding. Abnormal social 

processing may impact action-reward and contextual updating.142 Indeed, social predictive-

error coding is partially indexed by fronto-cingulate mechanisms,142 compromised in people 

with bvFTD. In contrast, altered learning MFN modulations in PD, compatible with fronto-

striatal disruptions143 may evidence subtle pathophysiological mechanisms of feedback-related 

learning deficits. In AD, disrupted learning MFN modulations144 may resemble generalized 

associative learning alterations136, 137 in accordance to our hypothesis. Thus, the MFN may be 

considered a novel ongoing marker of SRL in neurodegeneration, selectively compromised in 

bvFTD.

Neuroanatomical markers of SRL and atrophy mechanisms
Neuroanatomical correlates of SRL suggest that the integration of social and learning processes 

critically relies on temporo-parietal hubs (i.e., temporo-parietal junction)24 and secondarily on 

fronto-insular-limbic regions, consistent with predictions from the social-context network 

model.17-22 These hubs index critical processes for socio-contextual learning,145 including 

perspective taking, facial emotional recognition, contextual integration, reward processing, and 

object memory. In bvFTD, neuroanatomical signatures of SRL support the role of the temporo-

parietal junction in processing behaviorally relevant social information.146 Perspective taking 

in socially-motivated contexts may also contribute to associative learning and object memory 

processes.36 Conversely, in AD, specific limbic involvement in SRL suggests its role in the use 

of social cues during associative learning. In particular, associations with hippocampal regions 

may reflect the involvement of general associative learning and object memory processes.147 

Moreover, additional associations with orbitofrontal, insular, and anterior cingulate regions 
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may indicate socio-emotional and reward-related processing.22, 145, 148-150 Lack of 

neuroanatomical associations in PD suggests specific SRL deficits may be explained by 

pathophysiological mechanisms unrelated with brain atrophy.143

Compared with SRL, NSRL was consistently associated with medial temporal (hippocampal) 

regions6, 59 in HCs, bvFTD and AD. In this sense, conjunction analysis suggests large 

differential anatomical correlates for social and non-social conditions, with minimum overlap. 

Expected regions involved in general associative and implicit learning such as hippocampus151, 

152 and hypothalamus153 evidenced common neural correlates for both social and non-social 

learning. In sum, cortical temporo-parietal hubs (and, to a lesser extent, fronto-limbic regions) 

may play a key role in SRL and in selective bvFTD deficits.

Multimodal evidence of distinct mechanisms across 

neurodegenerative disorders
Our study provides novel multimodal evidence of distinct social and learning processes in 

neurodegenerative diseases. Ongoing frontal EEG markers and brain structural correlates, 

captured by the social context network model, shed light on how similar SRL deficits in 

different diseases may be rooted in distinct anatomo-functional disruptions. 

Neurophysiological evidence of broad temporo-parietal and frontal involvement in the SRL 

condition compared to NSRL points to the complexity of social sources of feedback. Results 

from bvFTD patients, in comparison with controls, reveal selective social deficits consistent 

across dimensions. Their failure to use socially relevant information as a prior to correct 

inferential prediction errors and improve learning18, 39, 40 might be related to both 

neurodegeneration and a lack of appropriate MFN modulations. This lack of social reward 

mediation in updating expectations and actions could hardly be explained by a perceptual 

impairment, since visuoperceptual integration of stimuli seems to be preserved (supported by 

N170 component modulation154 and SRL deficits when covarying by valence recognition). 

Consistent with our findings, prior research has shown that social signals are encoded by the 

temporo-parietal junction, anterior cingulate, and dorsomedial prefrontal cortices.24, 142 

Although future research is needed to test this conjecture, our findings in bvFTD could be 

explained by alterations in social prediction-error coding. Moreover, these deficits likely 

exacerbate memory impairments also present in this condition.47, 51, 134, 135 Deficits in PD were 
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accompanied by preserved social MFN and impaired learning MFN modulations, as well as a 

lack of neuroanatomical specificity, suggesting a different pathophysiological mechanism. 

Specifically, possible MFN-related fronto-striatal dysregulations143 may impact social reward 

prediction-error signals during feedback-related learning.3, 26, 155 Finally, social MFN 

modulations and fronto-limbic associations in AD could be impacted by disrupted associative 

learning and object memory processes in SRL. These mechanisms are strongly affected by 

medial temporal and temporo-parietal degeneration.156 Consequently, social-feedback learning 

facilitation may be vulnerable to decay with increasing disease severity.36 Between-condition 

comparisons in each neurodegenerative group fall outside the scope of our study. However, 

multidimensional results coupled with supplementary dissociation analysis between conditions 

among neurodegenerative cases (see Supplementary Material 3.7 for details), partially 

support the interpretation of different social and learning mechanisms, pointing to more 

specific SRL disruptions in bvFTD.

This convergent evidence of SRL patterns across neurodegenerative diseases carries clinical 

implications. Social cognitive disruptions and memory alterations have been largely described 

as canonical deficits in bvFTD and AD, respectively. However, evidence of memory 

impairments in bvFTD49 and social cognitive deficits in AD50 has hindered differential 

diagnosis between both conditions.47, 51 Here we shed light on this issue by combining social 

cognition and learning processes in a single task, and using multiple levels of analysis including 

EEG and MRI. Our multimodal findings present two disrupted SRL patterns in bvFTD and 

AD. Moreover, they revealed how similar behavioral SRL outcomes (i.e., in bvFTD and PD) 

may be explained by different neurophysiological pathways. Our study acknowledges the 

synergic assessment of these cognitive processes19-22, 157 as well as the specificities of each 

model in their comparison to HCs, offering new transnosological insights across 

neurodegenerative conditions.

Limitations and further research
We acknowledge certain limitations to our study. First, our design is based on a modest sample 

size. Nevertheless, it is similar to or larger than those of other multimodal reports assessing 

neurodegenerative subtypes.30, 32, 36, 40, 158, 159 Also, this caveat was counteracted by the strict 

control of demographic and clinical variables, as well as detailed diagnostic procedures and 
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systematic assessments. Moreover, our multimodal results across behavioral, 

electrophysiological, and neuroanatomical dimensions, with moderate to large effect sizes, 

further attests to their robustness. In any case, future studies should replicate and extend these 

results with larger and adequately matched patient groups and alternative designs allowing for 

exploration of systematic effects across different neurodegenerative groups. Such an approach 

may allow for direct patients group comparisons which are beyond the scope of our study. 

Second, our findings rely on social-feedback facilitation processes triggered by static emotional 

faces. Performance was assessed through implicit associations including simple stimuli (three-

digit numbers) to prevent semantic confounds and task-load effects on learning outcomes.160, 

161 The use of simple stimuli allows assessing cognitively impaired populations. 

Notwithstanding, future tasks should strive for greater ecological validity by addressing SRL 

using more naturalistic settings33, 34 and stimuli (such as sentences or object localization 

associations). Third, the processing of socioemotional stimuli in the SRL may be affected by 

facial emotion recognition disturbances that are characteristic of bvFTD.108, 109 However, we 

used a single face displaying only two emotions and our results persisted when controlling for 

valence recognition (Supplementary Material 2.1 and Supplementary Material 3.6). These 

results suggest that feedback processing is influenced by social content (rather than emotional 

detection impairments). Future studies should compare how learning is affected by different 

social stimuli (facial vs. non-facial, and emotional vs. non-emotional). In this sense, learning 

effects between conditions may be influenced by visuoperceptual complexity of feedback cues. 

However, several reasons suggest that the observed effects are better explained by the social 

nature of the SRL stimulus including the robustness of an already validated task10 similar to 

previous experimental designs,6, 33, 38 cognitive load control with the use of one face per 

valence,35 MFN modulations suggesting processing of learning effects instead to stimulus 

complexity (except for bvFTD), and replication of results after controlling for valence 

recognition (Supplementary Material 3.6; see also Supplementary Discussion 7). 

Nonetheless, visuoperceptual complexity among stimuli should be better controlled in future 

works, with a 2x2 (social/non-social, complex/simple) stimuli design. Finally, although our 

multimodal assessment approach includes task-related EEG measures, future studies should 

also include active functional neuroimaging paradigms to better elucidate the regions and 

networks mediating SRL.

Page 20 of 65

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain
D

ow
nloaded from

 https://academ
ic.oup.com

/brain/advance-article/doi/10.1093/brain/aw
ab345/6371182 by guest on 27 Septem

ber 2021



Conclusions
Our multimodal lesion model approach reveals convergent evidence of dissociable effects of 

learning and social feedback across neurodegenerative diseases. These novel results may 

support theoretical accounts of multimodal SRL mechanisms involving ongoing MFN activity 

and anatomical deficits underpinned by the social-context network model. A novel clinical 

agenda is thus opened, related to the characterization and treatment of these social cognition 

and learning processes in neurodegeneration. 
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Figure 1 SRL task and behavioral results. (A) SRL task design. Participants judged whether 

three-digit numbers presented repeatedly on a computer screen belonged to either category “A” 

or “B”. Visual feedback immediately followed each number-category judgement (smiling face 

for correct responses or angry face for incorrect responses in the SRL condition; green circle 

for correct responses or red circle for incorrect responses in the NSRL condition). High-density 

EEG recordings were obtained during the task. (B) Behavioral results in HCs. Left: repeated 

measures ANOVA of accuracy across cycles and feedback conditions. Right: One-way 

ANOVA between feedback conditions for the learning index (Spearman's rank correlation 

coefficient values for the accuracy score by cycle). The mean difference (effect size) of the 

between-conditions comparison in HCs (NSRL minus SRL) is reported. (C) Behavioral 

results: between-group comparisons. Learning index for comparisons of behavioral 

performance between groups, for SRL and NSRL conditions. The between-groups mean 

difference (effect size) between HCs and each neurodegenerative group is reported below each 

result. Behavioral results were replicated when controlling for sex and valence recognition (see 

Supplementary Material 3.5 and Supplementary Material 3.6 for details). The asterisk (*) 

indicates significant differences with an alpha of P < 0.05. AD: Alzheimer’s disease, bvFTD: 

behavioral variant of fronto-temporal dementia, HCs: healthy controls, NSRL: non-socially 

reinforced learning, PD: Parkinson’s disease, SRL: Socially reinforced learning.

Figure 2 Spatiotemporal cluster results for SRL. (A) SRL vs NSRL conditions for each 

group. Pink and grey solid curves show the average values of the maximum cluster, while pink 

and grey dashed curves show the average values of a reference electrode yielding maximum 

difference by univariate t-test. (B) Initial set vs final set comparison in the SRL condition. 

Dark pink and light pink solid curves show the average values of the maximum cluster, while 

dark pink and light pink dashed curves show the average values of a reference electrode 

yielding maximum difference by univariate t-test. Shadowed bars around solid curves indicate 

SEM. Scalp plots show, for significant clusters, the t-values obtained at time marked by the 

black vertical dashed line for the electrodes belonging to the cluster (small white dots) and, for 

the non-significant clusters, the t-values obtained at time marked by the black vertical dashed 

line for all the electrodes. Black vertical dashed line shows the time when the maximum 
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difference was obtained for the reference electrode (large white black-contoured dot). Black 

horizontal rectangle indicates time interval where the cluster results are statistically significant. 

AD: Alzheimer’s disease, bvFTD: behavioral variant of fronto-temporal dementia, HCs: 

healthy controls, NSRL: non-socially reinforced learning, PD: Parkinson’s disease, SRL: 

socially reinforced learning.

Figure 3 Associations between GM volume and SRL/NSRL indexes. These analyses were 

conducted to identify regions, in all groups together and in separate tandems (bvFTD-HCs, PD-

HCs, and AD-HCs) associated with SRL and NSRL performance (SnPM, 5000 permutations, 

cluster-wise inference P-FWE < 0.05). Results are presented on MNI space using the AAL 

atlas,162 in the neurological convention. No significant structural associations were found in the 

PD group. R: right; L: left. AD: Alzheimer’s disease, ALL: all groups, bvFTD: behavioral 

variant frontotemporal dementia; NSRL: non-socially reinforced learning, PD: Parkinson’s 

disease, SRL: socially reinforced learning.

Figure 4 Anatomical conjunction of SRL and NSRL conditions. Whole-brain conjunction 

analyses were conducted in order to assess the shared and distinct neural correlates of SRL and 

NSRL conditions. Results are presented on MNI space using the AAL atlas,162 in neurological 

convention. Blue represents significant clusters of SRL. Green represents significant clusters 

of NSRL. Red represents overlapping clusters between SRL and NSRL conditions (right 

parahippocampus [peak MNI coordinate: x = 22.5; y = -22.5; z = -15; k = 292], and right 

hypothalamus [peak MNI coordinate: x = 15; y = -4.5; z = -10.5; k = 224]). NSRL: non-socially 

reinforced learning, SRL: socially reinforced learning.
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Table 1 Previous studies that assessed social learning and feedback-based learning in behavioral variant frontotemporal dementia, Alzheimer’s disease, and/or Parkinson’s disease

 Authors / Journal Groups: n Tasks Behavioral performance ¿Social information improves 
learning?

EEG, brain structural and/or 
functional associations

Keri, (2014). Cortex.33 Early-stage bvFTD: 16, elderly, 
early-stage AD: 20, HCs: 20

Paired-associate learning task: 
real-life game (real persons) 
(social) vs. computer games 
(boxes and neutral faces) (non-
social)

Real-life game: HCs = AD > 
bvFTD
Computer games: HCs = bvFTD > 
AD

Yes, only real-life interactions 
improved associative learning in 
early-stage AD

NA

Wong et al., (2017). 
Neuropsychologia.36

bvFTD: 20, AD: 14, HCs: 20 Trust game task: steal/share 
associated to face (social) vs. 
lottery (non-social)

Social learning accuracy: HCs > 
bvFTD = AD

No, reduced capacity to learn 
socially relevant information in 
both bvFTD and AD

GM atrophy (VBM) correlations 
for bvFTD (Lateral occipital cortex, 
superior temporal gyrus, middle 
temporal gyrus, frontal pole, 
orbitofrontal cortex, putamen, 
middle frontal gyrus) and for AD 
(Superior temporal gyrus, 
cerebellum, parahippocampal 
gyrus, hippocampus, lateral 
occipital cortex)

Duff et al., (2013). The Journal of 
Comparative Neurology.34

Early-stage AD: 5, HCs: 10 Collaborative referencing task 
(real-life interactive learning task) 
(social) vs. paired-associate 
learning control task (non-social)

Collaborative referencing task: 
HCs = AD 
Paired-associate learning control 
task: HCs > AD

Yes, real-life interactions with a 
familiar person improved 
associative learning in early-stage 
AD

NA

Schmitt-Eliassen et al., (2007). 
Brain Research.42

PD: 31, elderly HCs: 30 Feedback-based learning task vs. 
observational learning task (only 
non-social)

Feedback-based task: HCs = PD 
(but no learning effect under 
feedback-based task compared to 
observational task in neither 
group)

NA NA

Meissner et al., (2016). 
Behavioural Brain Research.41 

PD: 18, HCs: 18 Feedback-based learning task 
(only non-social)

Feedback-based task: HCs > PD NA NA

Shohamy et al., (2004). Brain.43 PD: 13, HCs: 13 Feedback-based learning task vs. 
observational learning task (only 
non-social)

Feedback-based task: HCs > PD
Observational task: HCs = PD

NA NA

AD: Alzheimer’s disease, bvFTD: behavioral variant of fronto-temporal dementia, HCs: healthy controls, GM: grey matter; PD: Parkinson’s disease, VBM: Voxel-based morphometry. 
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Table 2 Samples’ demographic and neuropsychological data
HCs

(n = 40)
bvFTD

(n = 21)
PD

(n = 31)
AD

(n = 20)
Stats Post hoc comparisons

Demographics

Sex† (M:F) 18:22 16:05 18:13 9:11
χ2 = 6.32
P = 0.09

HCs-bvFTD: P = 0.02*
HCs-PD: P = 0.27
HCs-AD: P = 1

Age† 68.92 (8.66) 66.67 (11.52) 70.48 (9.10) 73.00 (6.01)
F = 1.86
P = 0.13 
ηp2 = 0.04

HCs-bvFTD: P = 0.35
HCs-PD: P = 0.47
HCs-AD: P = 0.10

Education 13.90 (3.67) 14.43 (5.03) 12.29 (4.31) 12.30 (4.00)
F = 1.76
P = 0.15
ηp2 = 0.04 

HCs-bvFTD: P = 0.64
HCs-PD: P = 0.11
HCs-AD: P = 0.16

Handedness 
(R:L)

38:2 20:1 29:2 19:1
– –

Cognitive assessment

MoCA† 25.59 (2.57) 21.00 (5.51) 21.93 (4.31) 16.11 (4.46)
F = 24.14
P < 0.001*
ηp2 = 0.40

HCs-bvFTD: P < 0.001*
HCs-PD: P < 0.001*
HCs-AD: P < 0.001*

IFS† 22.09 (3.79) 18.62 (6.30) 19.88 (4.12) 14.97 (4.38)
F = 11.30
P < 0.001*
ηp2 = 0.24

HCs-bvFTD: P = 0.006*
HCs-PD: P = 0.05
HCs-AD: P < 0.001*

Results are presented as mean (SD). Lower executive function scores (IFS) in AD are triggered by advanced age and lower general cognitive state.162 
Demographic and cognitive data were assessed through ANOVAs and post hoc pairwise comparisons –except for sex, which was analyzed via 
Pearson’s chi-squared (χ2) test. Effects sizes were calculated through partial eta (ηp2). AD: Alzheimer’s disease, bvFTD: behavioral variant of fronto-
temporal dementia, HCs: healthy controls, IFS: INECO Frontal Screening,163 MoCA: Montreal Cognitive Assessment,164 PD: Parkinson’s disease.

*Significant differences with an alpha level of P < 0.05. 

†Variables with significant differences (P < 0.05) between neurodegenerative groups, precluding comparisons between them in our target measures. 

Page 42 of 65

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain
D

ow
nloaded from

 https://academ
ic.oup.com

/brain/advance-article/doi/10.1093/brain/aw
ab345/6371182 by guest on 27 Septem

ber 2021



Table 3 Feedback valence ratings
Feedback Accuracy HCs

(n = 40)
bvFTD

(n = 21)
PD

(n = 31)
AD

(n = 20)
Total 0.94 (0.24) 0.88 (0.33) 0.80 (0.4) 0.81 (0.39)

Social 0.90 (0.30) 0.92 (0.27) 0.81 (0.40) 0.85 (0.36)

Non-social 0.98 (0.16) 0.82 (0.38) 0.79 (0.41) 0.78 (0.42)

Social positive 0.90 (0.30) 1 (0) 0.81 (0.40) 0.85 (0.37)

Social negative 0.90 (0.30) 0.85 (0.37) 0.81 (0.40) 0.85 (0.37)

Non-social positive 0.98 (0.16) 0.90 (0.31) 0.84 (0.37) 0.85 (0.37)

Non-social negative 0.98 (0.16) 0.75 (0.44) 0.74 (0.44) 0.70 (0.47)

Results are presented as mean (SD). To assess feedback valence recognition among groups, participants were explicitly asked 
about the valence (positive, negative) of each feedback type [Social (smiling face, angry face); Non-social (green circle, red 
circle)] at the end of the experiment. All groups presented adequate valence recognition (with no significant differences; for 
details see Supplementary Material 2.1). AD: Alzheimer’s disease, bvFTD: behavioral variant of fronto-temporal dementia, 
HCs: healthy controls, PD: Parkinson’s disease.
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Table 4 Statistical comparison between groups (HCs, bvFTD, PD and AD) and conditions (SRL and NSRL) in the learning index
Kruskal-Wallis test

Statistical resultsCondition HCs bvFTD PD AD

H P η2[H]

SRL 0.46 (0.35) 0.22 (0.35) 0.17 (0.49) 0.007 
(0.48)

13.54 0.003* 0.097

NSRL 0.21 (0.45) 0.20 (0.45) 0.19 (0.40) -0.14 
(0.33)

10.89 0.01* 0.073

Mann–Whitney U 

Statistical resultsHCs Neurodegenerative’s samples

U P Cohen’s d
bvFTD: 0.22 (0.35) 577 0.017* 0.641

PD: 0.17 (0.49) 830.5 0.014* 0.605

SRL 0.46 (0.35)

AD: 0.007 (0.48) 186 0.001* 0.961

bvFTD: 0.20 (0.45) 419.5 0.997 0.002

PD: 0.19 (0.40) 655.5 0.684 0.098

NSRL 0.21 (0.45)

AD: -0.14 (0.33) 210.5 0.003* 0.831

Results are presented as mean (SD). The asterisk (*) indicates significant differences with an alpha level of P < 0.05. Learning 
Index (Spearman correlation’s Rho slope of cycles and accuracy score) were assessed through nonparametric Kruskal-Wallis 
tests (with two-tail Mann-Whitney-U tests for post hoc comparisons). Effect size for the Kruskal-Wallis test was calculated as 
the eta-squared based on the H-statistic: (H - k + 1)/(n - k), k being the number of groups, and for the Mann–Whitney U the 
Cohen’s d value was obtained.163 AD: Alzheimer’s disease, bvFTD: behavioral variant of fronto-temporal dementia, HCs: 
healthy controls, PD: Parkinson’s disease.
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