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Summary
Background Dysfunctional allostatic-interoception, altered processing of bodily signals in response to environmental
demands, occurs in behavioural-variant frontotemporal dementia (bvFTD) patients. Previous research has not
investigated the dynamic nature of interoception using methods like intrinsic neural timescales. We hypothesised
that longer intrinsic neural timescales of interoception would occur in bvFTD patients, evidencing dysfunctional
allostatic-interoception.

Methods One-hundred and twelve participants (31 bvFTD patients, 35 Alzheimer’s disease patients, AD and
46 healthy controls) completed a well-validated task measuring cardiac-interoception and exteroception. Simultaneous
EEG and ECG were recorded. Intrinsic neural timescales were measured via the autocorrelation window (ACW) of
broadband EEG signals from each heartbeat and a time-lagged version of itself. Spatiotemporal clustering analyses
identified clusters with significant between-group differences in each condition. Voxel-based morphometry was
used to target the allostatic-interoceptive network. Neuropsychological tests of cognition and social cognition were
assessed.

Findings In bvFTD patients, longer interoceptive-ACWs than controls were observed in the bilateral fronto-temporal
and parietal regions. In AD patients, longer interoceptive-ACWs than controls were observed in central and
occipitoparietal brain regions. No differences were observed during exteroception. In bvFTD patients only, longer
interoceptive-ACW was linked to worse sociocognitive performance. Structural neural correlates of interoceptive-
ACW in bvFTD involved the anterior cingulate, insula, orbitofrontal cortex, hippocampus, and angular gyrus.

Interpretation Our findings suggest a core allostatic-interoceptive deficit occurs in people with bvFTD. Further,
altered interoceptive intrinsic neural timescales may provide a neurobiological mechanism underpinning the
complex behaviours observed in bvFTD patients. Our findings support synergistic models of brain disease and
can inform clinical practice.
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Research in context

Evidence before this study
Emerging evidence suggests that altered allostatic-
interoceptive processing occurs in neurodegeneration, with
particular relevance for behavioural variant frontotemporal
dementia. Previous research, however, has used static
measures of interoceptive processes, such as neuroanatomical
correlates of behavioural tasks. These methods do not
consider the inherently dynamic nature of allostatic-
interoception. Further, it is currently unknown how these
processes may be impacted in neurodegeneration and the
relationship with behavioural patterns observed in the
disease.

Added value of this study
In a well-characterised cohort of behavioural variant
frontotemporal dementia and Alzheimer’s Disease patients,
we employed a novel measure of brain activity that captures
the dynamic processing on interoceptive information. Our

results suggest that altered intrinsic neural timescales of
interoception occur in behavioural variant frontotemporal
dementia and Alzheimer’s disease, unrelated to previously
used static measures of interoception. In behavioural variant
frontotemporal dementia only, these disrupted interoceptive
intrinsic neural timescales were associated with sociocognitive
performance and neural correlates within the allostatic-
interoceptive brain network.

Implications of all the available evidence
Taken together, our results support a core allostatic-
interoceptive deficit in behavioural-variant frontotemporal
dementia. This core deficit could reflect a neurobiological
mechanism that may underlie the outward behavioural
changes observable in this disease. Our work supports
synergistic models of brain health and disease, has
implications for earlier diagnosis and disease monitoring, and
may inform potential interventions.
Introduction
Interoception impairment (i.e., difficulties in the
sensing, perceiving, and anticipating of signals arising
from within the body) is a core feature that can occur in
multiple clinical conditions.1–3 Interoceptive deficits are
observed in brain diseases involving impairments in
autonomic regulation and visceral (e.g., cardiac) signal-
ling.4,5 Most research to date, however, has been based
on neuroanatomical correlates with fMRI or studying
the heart-evoked potential (HEP).6–8 Despite their merit,
these approaches are blind to the spatiotemporal
dynamics of interoception operating across time-
scales,9,10 or how these dynamics are associated with
neurocognitive profiles. Recently, a unified framework
has been proposed to overcome these challenges,
combining the predictive coding theory of allostatic
interoceptive overload (PAIO) and the intrinsic neural
timescales (INT) theory.11 The PAIO-INT framework
provides a synergistic model to understand brain health
and disease,12 however, to date, limited empirical
evidence directly testing this framework exists.

The PAIO considers the coding of internal (intero-
ceptive) and external (exteroceptive) signalling, groun-
ded in allostasis and interoception.11 Allostasis (i.e., the
brain’s continual prediction, anticipation, and adapta-
tion to meet the body’s needs before they arise or
become urgent)13 is deeply intertwined with inter-
oception.3 Allostatic-interoception is underpinned by the
Allostatic-Interoceptive Network (AIN), a large-scale
domain-general network including the anterior
cingulate cortex, insula, orbitofrontal cortex, amygdala,
thalamus, hippocampus, ventral striatum, and angular
gyrus.1,3,14 The INT theory proposes that different brain
regions operate on a hierarchy of intrinsic timescales,
which are used to process and actively shape the
multitude of inputs the brain receives from the ever-
changing internal and external environment.11 One
way to directly measure intrinsic neural timescales is via
autocorrelation windows (ACW).15 The ACW is the
correlation between a signal and a time-lagged version
of itself and represents the stability of a signal.15 Within
the combined PAIO-INT framework, shorter ACW of
interoceptive signals would enable rapid processing
of interoceptive information, whereas longer ACW of
interoceptive signals would represent delayed processes,
potentially associated with AIN dysfunctions.11

Behavioural-variant frontotemporal dementia
(bvFTD) provides an opportunity to investigate the
PAIO-INT framework via a lesion model approach.11,14,16

Accumulating evidence suggests that bvFTD is associ-
ated with core interoceptive deficits, allostatic overload
and autonomic dysfunction17–23 linked to sociocognitive
impairments.17,19 Moreover, both atrophy and functional
connectivity alterations observed in people with
bvFTD14,17,24 substantially overlap with the AIN.3 Some
evidence suggests that Alzheimer’s disease (AD) also
disrupts interoceptive and allostatic processes,18 as well
as cardiovascular indices.23,25 The nature and extent of
these disruptions, however, is reduced compared to
previous observations in people with bvFTD. The
www.thelancet.com Vol 113 March, 2025
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transient and dynamic nature of these interoceptive
deficits in people with bvFTD or AD is unclear, and
previous evidence of interoceptive deficits has been
largely derived from traditional, static, or behavioural
measures.17–19

Interoception, however, is inherently dynamic, and
involves transient spatiotemporal processes.11 Neurode-
generative processes may disrupt the brain’s intrinsic
neural timescales in different regions, providing a
mechanism underlying the heterogenous symptoms
often observed. For instance, people with bvFTD display
socially inappropriate behaviour, emotional blunting,
and apathy (all likely related to interoception deficits)11

are commonly observed symptoms.26–28 This disrupted
intrinsic neural processing within the AIN may imbal-
ance interoceptive and exteroceptive signals,11 poten-
tially explaining the maladaptive responses to
environmental demands observed in people with
bvFTD.14 In people with AD, the disruption of the
brain’s intrinsic temporal irreversibility (i.e., the tem-
poral asymmetry of brain dynamics)29 has been associ-
ated with cognitive decline, although this study was not
specific to interoception. Further, emerging evidence
suggests that brain and heartbeat dynamics can shift as
a function of healthy ageing and in other neurodegen-
erative conditions such as Parkinson’s disease.30,31

Beyond these emerging studies, the impact of altered
spatiotemporal brain dynamics on interoception in
people with bvFTD and AD remains poorly understood.
To our knowledge, no prior research has investigated
intrinsic neural timescales of interoception compared to
exteroception in patients with bvFTD or AD. Addition-
ally, it appears that there has been no investigation
linking altered timescales to behavioural or socio-
cognitive impairments in these conditions. Moreover,
we believe that no study has combined the spatiotem-
poral dynamics of interoception with the anatomical
correlates of the AIN. Finally, to our knowledge, the
ACW has not been applied to understanding the
different spatiotemporal dynamics of interoception and
exteroception in brain health or disease.

This work aims to bridge these gaps. First, we
investigated how INT scales in interoception and exter-
oception differ in people with bvFTD and AD. All
participants performed a well-validated heartbeat
tracking task,18–20,32–34 where attention was directed to
either interoceptive (i.e., heartbeat) or exteroceptive
(i.e., recorded heartbeat) cues. Simultaneous high-
density 128-channel EEG was recorded. Using a data-
driven approach, we aimed to uncover spatiotemporal
patterns across the whole brain associated with differ-
ences in ACW between patients and controls during
interoception or exteroception. To achieve this aim, we
calculated the ACW associated with each R-wave, which
represents a measure of EEG signal decay over time
(Fig. 1). Unlike the HEP, which typically occurs
250–550 ms post R-wave,6 we anticipated that the ACW
www.thelancet.com Vol 113 March, 2025
associated with each heartbeat would occur on a much
faster timescale to reach 50% (or 0.5 correlation value)
well before 250 ms, in line with previous studies
investigating ACW of EEG signals.35 We hypothesised
that longer ACW would be observed in patient groups
than controls due to disrupted intrinsic neural time-
scales during interoception. We also explored the rela-
tionship between ACW and metrics related to
interoception (e.g., interoceptive accuracy, heart rate
variability, and HEP). Second, we aimed to explore the
relationship between these altered INT and socio-
cognitive functioning in each disease. We anticipated
that the altered INTs in patients with bvFTD would be
associated with sociocognitive dysfunction, supporting
an allostatic interoceptive overload interpretation.17

Finally, we linked these altered temporal brain dy-
namics to neuroanatomical changes within the AIN, to
provide insights into disease mechanisms. We expected
that altered INT would be associated with brain regions
within the AIN,3,14 such as the insula, anterior cingulate
cortex, orbitofrontal cortex, amygdala, thalamus, hippo-
campus, ventral striatum, and angular gyrus.
Methods
Participants
Participants (n = 112) included 31 patients with bvFTD,
35 patients with AD, and 46 healthy controls (HC). Data
were obtained from the BrainLat database.36 Patients
were diagnosed by expert clinicians in line with current
diagnostic criteria for probable bvFTD or AD.37,38

Recruitment and diagnoses were conducted in clinical
centres by a multidisciplinary team as part of an
ongoing multi-centric protocol. Multidisciplinary exam-
inations supported diagnoses in line with the Multi-
Partner Consortium to Expand Dementia Research in
Latin America standardised protocol.39,40 Exclusion criteria
included the history of other neurologic disorders, psy-
chiatric conditions, primary language deficits, or substance
abuse. HC were demographically matched to each patient
sample using R MatchIt41 to create two tandem groups for
comparison (HC-bvFTD n = 31; HC-AD n = 34). Patterns
of differences in grey matter integrity in bvFTD vs con-
trols, and AD vs controls were consistent with atrophy
patterns previously reported in each disease
(Supplementary Tables S1 and S2).

Ethics
All participants or their caregivers provided informed
written consent in line with the Declaration of Helsinki.
The study was approved by the Ethics Committees of the
involved institutions (Argentina: INECO-Centro de
Psicología Médica San Martín de Tours: FWA00028264;
Chile: Geroscience FONDAP. Universidad de Chile
FWA00029236 and Hospital Clinico, Universidad de
Chile: FWA00029089). The experimental workflow is
provided in Fig. 1.
3
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Fig. 1: Experimental workflow diagram. a) Participants were matched on demographic variables to create bvFTD-HC and AD-HC tandems.
b) Neuropsychological tests were conducted including cognition, executive functioning, and social cognition measures. c) Participants
completed a validated interoception task with simultaneous EEG recording. d) 3D T1 scans were attained for a subsample of participants. e) EEG
preprocessing steps included re-referencing channels, filtering, resampling and artifact correction per standardised protocols. f) ACWs were
calculated starting on each heartbeat over a 3-s window. Plotted is an example of the Autocorrelation function and the time points where ACW
of the heartbeat reaches 50%. g) Spatiotemporal clustering analyses were conducted. Permutation-based testing (5000 permutations) was used
to detect significant clusters. h) Multiple linear regressions were conducted to predict sociocognitive functioning using the significant ACW
clusters in each group, together with demographic variables and diagnostic status. i) Voxel-based morphometry analyses were conducted to
identify atrophy patterns between groups. Then, regression models were conducted between the ACW and the AIN. Masks were created based
on the AAL3 for the AIN-core: anterior cingulate cortex, insula, amygdala; and AIN-extended: AIN-core plus Mid cingulate, orbitofrontal cortex,
thalamus, hippocampus, angular gyrus, and ventral striatum. Covariates included diagnosis, site, and TIV. Sample sizes are reported in a) and in
i). Abbreviations: AAL, Automated Anatomical Labelling; ACW, Autocorrelation window; AD, Alzheimer’s disease; bvFTD, behavioural variant
frontotemporal dementia; HC, Healthy Controls; ROI, Regions of Interest; TIV, Total intracranial volume. Some elements were created with
Biorender.com.
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Power calculations
A priori power calculations were conducted using
G*Power 3.142 and indicated that a total sample size of
55 would be appropriate for our main behavioural ana-
lyses (e.g., linear regressions with 6 predictors) in each
tandem group (effect size f2 = 0.15, power = 0.80,
α = 0.05). Our samples exceeded this estimation in each
tandem group and therefore our study was sufficiently
powered. Moreover, our sample size is similar to other
studies using EEG and VBM techniques in neurode-
generative conditions.17–20

Cognitive assessment
The Addenbrooke’s Cognitive Examination-III (ACE-
III)43 or Montreal Cognitive assessment (MoCA)44 were
used to assess cognitive performance. Both ACE-III
and MoCA provide measures of attention, memory,
language, and visuospatial abilities. For comparison,
ACE-III and MoCA were converted to Mini Mental
State Examination (MMSE) based on previous conver-
sion methods.45,46 Total MMSE-converted scores are out
of 30, with higher scores representing greater cognitive
performance.

Executive function
The INECO Frontal screening battery (IFS)47 was used
to assess frontal-executive function. The IFS measures
motor programming and sequencing, inhibitory
control, working memory, verbal fluency, abstract
reasoning, and interference control. Total IFS scores are
out of 30, with higher scores representing better execu-
tive function.

Social cognition
The Mini-Social and Emotional Assessment (Mini-SEA)48,49

was used to assess social cognition. The Mini-SEA consists
of two parts: i) facial emotion recognition test and ii) faux
pas recognition test. The facial emotion recognition test
uses Ekman’s faces and requires participants to select an
emotional label to match the presented face (i.e., fear,
sadness, disgust, surprise, anger, and happiness). The faux
pas recognition test measures theory of mind and is based
on the ability to detect social faux pas based on short
stories. Each part of the Mini-SEA is measured out of 15,
with a total score of 30. Higher scores represent better
social cognition performance.

Interoception-exteroception task
A validated heartbeat detection (HBD) task was
used,18–20,32–34,50 where participants completed two 2-min
blocks of interoception or exteroception. Participants
were required to tap a computer keyboard along with
their heartbeat (interoception) or external audio stimuli
(exteroception). Presentation order was counter-
balanced. High density EEG signals were recorded
during each condition (see EEG pre-processing). ECG
was recorded via external electrodes.
www.thelancet.com Vol 113 March, 2025
Neuroimaging acquisition
Whole-brain structural MRI data were obtained, and
standard pre-processing steps were followed as recom-
mended by the Organisation for Human Brain Map-
ping.51,52 Each centre followed standard protocols
(Supplementary Table S3 for scanner details).40,53,54

Twenty-five participants (10 HCs, 7 bvFTD, and 8 AD)
were excluded because of the absence of MRI recordings
or artifacts (Supplementary Table S4 for demographic
information of MRI sample).

Statistics
Demographics
Demographic and neuropsychological variables were
compared via independent t-tests (i.e., age, education,
cognitive, and social cognition scores), or chi-square
tests (i.e., biological sex - self-reported).

EEG pre-processing
High density EEG signals were recorded during each
condition using a Biosemi Active-two 128-channel
system at 1024 Hz. EEG data were resampled offline
at 256 Hz and filtered at 0.5–30 μV to remove any
unwanted frequency components (e.g., electrical inter-
ference, noise).55 A semi-automatic pipeline was
used.56,57 Independent component analysis was used to
correct eye movements, blink artifacts and cardiac field
artifacts58 and verified using a visual inspection proto-
col.18,20,59 R-wave values from the ECG signal were
identified with the pan Tompkins function on HEPLAB
toolbox.60 The reference was set to linked mastoids for
recording and re-referenced offline to the average of all
the rest of the electrodes. Malfunctioning channels were
replaced via statistically weighted spherical interpolation
(based on neighbouring sensors).61 EEG data were split
into continuous files for interoception or exteroception
for each participant for ACW analyses described below.

Autocorrelation window (ACW)
The autocorrelation function (ACF) quantifies the
correlation between a signal and a delayed version of
itself at various time lags,62 indicative of the length of the
intrinsic neuronal timescales.63–67 The ACW is defined
as the time lag at which a specific value of autocorrela-
tion is reached.68 In this work, we focused on the ACW-
50, which marks the point at which the autocorrelation
function intersects the correlation threshold of 0.5 and
has been previously investigated in neuroimaging
studies.63,69 We investigated ACW at the channel level by
computing the ACW-50 on the broadband pre-processed
signal, in line with previous works.70,71 The ACW, and
the ACW-50 in particular, can be used as measures of
the stability of a signal, where a random time series
tends to exhibit an ACW-50 nearing zero, while a signal
with slower dynamics manifests non-zero values.
Using custom MATLAB code, we computed the ACF
and ACW-50 using a predefined time lag of 1 sample
5
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(1/256 Hz = 0.004 s) for each heartbeat (t0) for each
electrode and for each epoch (3-s windows) for both
interoception and exteroception conditions. Then, we
averaged over epochs to get a value per electrode which
was used for the spatial clustering analysis. To ensure
that the ACF always reached 0.5, in line with previous
works,15,35,70,71 we also plotted the ACF function for each
group (Supplementary Figure S1).

Spatiotemporal clustering analysis
To avoid a priori spatiotemporal bias and account for
multiple comparisons, non-parametric data driven
spatiotemporal clustering was performed.72–74 ACW dif-
ferences between groups were assessed in interoception
and exteroception through cluster-based topographic
analyses. First, for each between-group comparison, we
performed a Wilcoxon test—a univariate non-
parametric test that does not assume normal distribu-
tion75—on the ACW values associated with each
electrode and obtained the associated p-values for each
electrode. Next, we set a conservative threshold of
p < 0.025 to define clusters of neighbouring electrodes
to identify potential differences between groups. To be
considered significant, clusters needed to encompass 5
or more electrodes.73 To assess the significance of the
identified spatiotemporal clusters, permutation-based
testing was used (5000 permutations), with recombi-
nation and randomised resampling of the participant-
wise averages before each repetition using a Monte
Carlo method. The cluster-level statistic was set to
p < 0.05.

Heart-evoked potential
To examine the HEP in interoception and exter-
oception, we segmented the continuous EEG signal
into epochs from −300 to 600 ms around the R-wave
peak in each condition and baseline-corrected relative
to the −300 ms time window preceding the heart-
beat.17,20,59 Low drifts were removed by linear trend
corrections.55 Next, noisy epochs were rejected when
trials exceed a threshold of 2.5 standard deviations
from the mean probability distribution calculated from
all trials and using probability distribution kurtosis.76

Trials were averaged across subjects for group
comparisons between conditions (Supplementary
Figure S2a and b).

Predictors of behavioural measures
Multiple linear regressions were run to predict the
following behavioural outcomes: i) global cognition; ii)
executive function; iii) overall social cognition; and iv)
emotion recognition. Each model included the following
predictors: i) dummy coded diagnosis (bvFTD-control
tandem; or AD-control tandem); ii) ACW-50 average
cluster value for relevant cluster; iii) age; iv) biological
sex - self-reported (male or female); v) education; and vi)
site. These predictors were chosen based on previous
evidence reporting a relationship between interoception
and sociocognitive measures,17,19,20,32 while controlling
for the influence of demographic variables. All p-values
for predictors were FDR-corrected using the Benjamini-
Hochberg method.77 Further, we repeated our multiple
regression models including the HEP (average modu-
lation between 200 and 500 ms) to investigate whether
the pattern of results was influenced by the HEP. All
behavioural analyses were conducted using Python
(v.3.10.12) with Pandas package (v.2.0.3)78 and Stats-
models package (v.0.14.2).79 Assumptions of linear
regression (e.g., linearity, normality, and multi-
collinearity) were assessed (Supplementary Materials).
The normality assumption was violated in several
models and transformations did not improve normality.
For consistency, all regression models were conducted
with bootstrapping techniques with 5000 iterations to
increase precision.80 Bootstrapped coefficients and 95%
CI are reported alongside the original models for com-
parison. Missing data was imputed using an iterative
imputer with a Bayesian ridge model as the estimator
using Sci-kit learn package (v.1.6).81 Comparisons of
missing and raw data are reported in Supplementary
Tables S5 and S6.

Relationship with interoceptive accuracy, heart rate variability
and HEP
Pearson’s correlations were conducted to investigate the
relationship between the ACW-50 cluster and intero-
ceptive accuracy, as measured by the mean distance
index82 and heartrate variability (RR-interval and SD of
the RR interval),83 and the HEP (average modulation
between 200 and 500 ms). Group differences in inter-
oceptive accuracy, heartrate variability, and HEP are
reported in Supplementary Materials (Supplementary
Table S9, Supplementary Figure S2a and b).

MRI pre-processing and analysis
Voxel-based morphometry (VBM) was performed using
the Computational Anatomy Toolbox (CAT12, https://
neuro-jena.github.io/cat/) in MATLAB R2022a. Stan-
dard pre-processing steps included bias-field correction,
noise reduction, skull stripping, segmentation, and
normalisation to the Montreal Neurological Institute
(MNI) space with a resolution of 1.5 mm isotropic, us-
ing default parameters. Sample homogeneity and
orthogonality checks were performed. Regions of in-
terest (ROI) masks were created using the MarsBar
toolbox84 for the AIN-core (bilateral insula, anterior
cingulate cortex, and amygdala) and AIN-extended re-
gions (bilateral insula, anterior cingulate cortex, and
amygdala, together with the bilateral orbitofrontal cor-
tex, mid cingulate cortex, angular gyrus, hippocampus,
thalamus, and ventral striatum)2,3 using the Automated
Anatomical Labelling (AAL-3) atlas.85 Within ROI
masks, regression analyses were conducted with the
ACW-50, controlling for group and scanner. All clusters
www.thelancet.com Vol 113 March, 2025
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Group Statistic p

HC AD

n = 34 n = 35

Age 72.44 ± 5.58 73.37 ± 7.65 −0.58 0.58

Sex (M:F) 13:21 12:23 0.116 0.73

Education (years) 13.32 ± 3.57 12.49 ± 4.91 0.81 0.42

Articles
were FDR-corrected, p < 0.05, with a cluster extent
threshold of 50 contiguous voxels.

Role of funders
Funding bodies played no direct role in study design,
data collection, analysis, or interpretation of data, manu-
script preparation or decision to submit for publication.
MMSE-converted (/30) 28.03 ± 1.14 22.74 ± 2.85 10.16 <0.001

IFS (/30) 22.24 ± 3.04 15.05 ± 4.92 7.09 <0.001

Mini-SEA total (/30) 24.90 ± 2.60 19.21 ± 3.68 5.41 <0.001

Mini-SEA emotion (/15) 12.04 ± 1.54 10.47 ± 2.19 2.92 0.003

Mini-SEA faux pas (/15) 12.93 ± 1.87 9.38 ± 2.44 4.98 <0.001

HC bvFTD

n = 31 n = 31

Age 66.94 ± 9.06 67.87 ± 11.38 −0.35 0.73

Sex (M:F) 18:13 15:16 0.58 0.45

Education (years) 15.06 ± 3.55 14.48 ± 4.82 0.53 0.60

MMSE-converted (/30) 28.04 ± 1.17 25.24 ± 2.64 5.19 <0.001

IFS (/30) 23.01 ± 3.78 18.11 ± 4.98 4.29 <0.001

Mini-SEA total (/30) 24.54 ± 2.20 20.47 ± 5.80 3.29 0.001

Mini-SEA emotion (/15) 11.79 ± 1.35 10.16 ± 2.64 2.71 0.01

Mini-SEA faux pas (/15) 13.01 ± 1.88 11.53 ± 2.25 2.29 0.01

Note. Values represent mean ± standard deviation unless otherwise specified. Statistics represent independent
samples t-tests, except for Sex, where chi-square statistics are reported. Abbreviations: AD, Alzheimer’s Disease;
bvFTD, behavioural variant frontotemporal dementia; HC, Healthy controls.

Table 1: Demographic, cognitive and social-cognitive assessments in AD, bvFTD and healthy
controls.
Results
Demographics, cognitive, and social-cognitive
performance
Demographic information is shown in Table 1. No dif-
ferences were observed in age, sex, or education between
patient and HC tandem groups. Both patient groups
showed worse cognitive scores, executive dysfunction,
and social cognition impairment relative to controls.

Spatiotemporal cluster analysis
ACW-50
bvFTD. During interoception, the ACW-50 differed
significantly between bvFTD and HC in the bilateral
frontotemporal and parietal regions (Fig. 2a).
No significant differences were observed in exter-
oception between groups.

AD. During interoception, the ACW-50 differed
significantly between AD and HC in the central-parietal
regions (Fig. 2b). No significant differences were
observed in exteroception between groups.

Predictors of cognition, executive dysfunction, and social
cognition
We conducted multiple linear regressions to investigate
if the ACW-50 average cluster from each patient group
during interoception (bvFTD-controls, Fig. 2c, e, g, i;
and AD-controls, Fig. 2d, f, h, g) predicted cognitive and
socioemotional measures (Tables 2 and 3).

bvFTD-controls. Worse cognition was predicted by
longer ACW-50 cluster values during interoception,
together with a diagnosis of bvFTD, and less education
(Table 2, Fig. 2c). Worse overall social cognition was
predicted by interoceptive longer ACW-50, together with
a diagnosis of bvFTD (Table 3, Fig. 2g). Worse emotion
recognition was predicted by interoceptive longer ACW-
50, with a trend for diagnosis of bvFTD observed
(Table 3, Fig. 2i). Worse executive functioning was pre-
dicted by diagnosis of bvFTD and site (Table 2, Fig. 2e).

AD-controls. Worse cognition, executive function,
social cognition, and emotion recognition were pre-
dicted by a diagnosis of AD, with less education also
predicting worse cognition (Tables 2 and 3, Fig. 2d, f, h,
g). ACW-50 was not a significant predictor of any
behavioural outcome in AD.
www.thelancet.com Vol 113 March, 2025
All regression results in bvFTD and AD patients
remained unchanged when accounting for HEP
modulation (Supplementary Tables S7 and S8).

Relationship between ACW-50 clusters,
interoceptive accuracy, and heart rate variability,
and HEP
Both patient groups showed reduced HEP modulation
in the interoceptive in comparison with exteroceptive
condition (Supplementary Figure S2a), both only bvFTD
showed a selective interoceptive deficit when compared
with controls (Supplementary Figure S2b). Further, both
patient groups showed worse interoceptive accuracy
than controls. No differences were observed in heart-
rate variability (R-R interval in ms). No associations
were observed between ACW-50 clusters and intero-
ceptive accuracy, heart-rate variability metrics, or
average HEP in the bvFTD-control or AD-control groups
(all p’s > 0.10) (Supplementary Material).

Neuroimaging results
Associations with ACW-50
bvFTD-controls. In bvFTD, longer interoceptive ACW-50
values in the bilateral frontotemporal and parietal clusters
(Fig. 2a) were associated with reduced structural integrity
of the right insula and bilateral pregenual and superior
ACC within the AIN-core mask (all FDR-corrected
7
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Fig. 2: Spatiotemporal dynamics of interoception in patients compared with controls. ACW-50 cluster differences between a) bvFTD and
controls, b) AD and controls for interoception. No significant differences were observed during exteroception. Regression models between
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p < 0.05, Fig. 3c, Table 4), together with the bilateral
angular gyrus, bilateral MCC, right hippocampus, and
bilateral orbitofrontal cortex within the AIN-extended mask
(all FDR-corrected p < 0.05, Fig. 3e, Table 4).

AD-controls. In AD, no correlations between intero-
ceptive ACW-50 and ROI regions survived statistical
threshold corrections (all FDR-corrected p > 0.05,
Fig. 3b, d, f).

Discussion
Our study provides empirical evidence of altered
spatiotemporal brain dynamics associated with inter-
oception in bvFTD and AD. Altered spatiotemporal
brain dynamics of interoception were related to
impaired sociocognitive functioning in bvFTD only,
suggesting a core allostatic-interoceptive deficit in this
condition. Neuroimaging analyses uncovered associa-
tions between altered spatiotemporal brain dynamics
and structural integrity of key areas of the allostatic-
interoceptive network, highlighting the neurobiological
mechanism of this deficit in bvFTD. This evidence
suggests that dysfunctional intrinsic neural timescales
of interoception could be a mechanism for the neuro-
cognitive impairments observed in patients with bvFTD.
In the following sections, we consider how our results
are in line with the recently proposed PAIO-INT theo-
retical framework11 and how these measures may
inform clinical understanding of these diseases.

Our findings in bvFTD support the presence of a
core allostatic-interoceptive deficit.14 Behavioural, phys-
iological, and neuroimaging measures from previous
studies support similar conclusions.17–20 Our findings
extend previous research by uncovering altered intrinsic
timescales (longer ACW during interoception but not
exteroception) in bvFTD and its specific association with
neurocognitive core deficits. While deficits in the HEP
were observed in both patient groups, a selective
impairment was observed in bvFTD during the intero-
ceptive condition, in line with previous reports.17,18,20

However, the dynamic measures of intrinsic neural
timescales during interoception were not explained by
static measures, such as the HEP modulation or HRV.
Slower intrinsic timescales during interoception may
result in dysfunctions in the brain’s predictive coding
capacities.11 Altered intrinsic neural timescales of
interoception were linked to key AIN structures and
relevant sociocognitive measures in bvFTD. This
ACW-50 average cluster scores for interoception are shown for global cog
controls; for executive function in e) bvFTD patients and controls, and f
patients and controls and h) AD patients and controls; and for emotion r
controls. Significant predictors within each model are highlighted in p
*p < 0.05, **p < 0.01, ***p < 0.001. Sample size for bvFTD-control tandem
n = 35, CN, n = 34; Abbreviations: ACW, Autocorrelation window; A
dementia; IFS, INECO frontal screening battery; Mini-SEA, Mini Social Em

www.thelancet.com Vol 113 March, 2025
evidence supports the idea that the maladaptive envi-
ronmental responses in this disease are due to a core
allostatic-interoceptive deficit,11,14 and may be due to
failures of temporal segregation and integration of
relevant internal and external signals.11 Altered intrinsic
neural timescales of interoception could represent an
early marker of brain disease, prior to the onset of
observable clinical symptoms in bvFTD. Indeed, the
regions of the AIN, such as the insula and anterior
cingulate cortex, are vulnerable to early pathophysio-
logical changes in bvFTD24 and have been reported up to
10 years before disease onset.86,87 Our work opens ave-
nues for future research to consider the role of early
allostatic-interoceptive deficits in bvFTD as a marker of
disease. Importantly, our findings complement and
extend upon static measures of interoception
and anatomical structure-function brain mapping
by uncovering dynamic spatiotemporal hierarchies
to further our understanding of brain health and
disease.11

Altered timescales of interoception appeared to also
be relevant to AD. This may relate to a generalised
disruption of brain oscillations in AD, further supported
by the non-specific reduced modulation of the HEP for
interoception and exteroception observed in our study.
Emerging evidence has reported that in AD, the
disruption of the brain’s intrinsic temporal irrevers-
ibility (i.e., the temporal asymmetry of brain dynamics)
occurs across the whole brain and with all frequency
bands.29 In our study, however, the longer timescales
during interoception in AD had no relationship to
clinical features or neuroanatomical correlates of the
disease. This is not surprising, as previous research in
AD in interoception has also produced mixed findings at
the behavioural and neural level,18–20 in comparison with
bvFTD where allostatic-interoceptive deficits appear to
be pervasive.11,14,16–20 This different pattern of results in
bvFTD and AD may reflect the preferential and wide-
spread damage within the AIN in bvFTD11,14,16–20,24

whereas in AD, AIN damage appears to be more cir-
cumscribed.17,38,88 Taken together, our results suggest
that temporal dynamics of interoception in AD are not a
sui generis deficit, with no specific anatomical and
behavioural associations.

Our findings complement evidence from psychiatric
populations,35,89,90 suggesting that dysfunctional
allostatic-interoception may be a transdiagnostic
feature.11 Meta-analytic evidence has shown that
nition in c) bvFTD patients and controls, and d) for AD patients and
) AD patients and controls; for overall social cognition in g) bvFTD
ecognition in i) bvFTD patients and controls, and j) AD patients and
urple (bvFTD) and green (AD). All predictors were FDR corrected,
: bvFTD, n = 31; CN, n = 31. Sample size for AD-control tandem: AD
D, Alzheimer’s disease; bvFTD, behavioural variant frontotemporal
otional Assessment; MMSE, Mini Mental State Exam; s, seconds.
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Cognition Executive functioning

bvFTD v controls

Overall model F (6, 55) = 10.99, p < 0.001, R2 = 0.545 F (6, 55) = 9.49, p < 0.001, R2 = 0.509

b(SE) t p b(SE)* 95% CI [L, U]* b(SE) t p b(SE)* 95% CI [L, U]*

Constant 24.79 (2.16) 11.48 <0.001 24.78 (2.25) [20.13, 28.99] 24.47 (4.58) 5.57 <0.001 25.47 (5.00) [16.33, 35.77]

Age 0.04 (0.02) 1.84 0.093 0.04 (0.02) [−0.01, 0.08] 0.05 (0.05) 0.96 0.344 0.05 (0.06) [−0.09, 0.16]

Sex −0.56 (0.45) −1.27 0.209 −0.57 (0.46) [−1.46, 0.34] −1.72 (0.94) −1.82 0.103 −1.72 (0.92) [−3.46, 0.11]

Education 0.16 (0.06) 2.99 0.009** 0.16 (0.06) [0.05, 0.28] 0.19 (0.12) 1.66 0.119 0.19 (0.12) [−0.06, 0.40]

Site −0.83 (0.47) −1.78 0.093 −0.83 (0.49) [−1.82, 0.10] −4.00 (0.99) −4.04 <0.001*** −4.00 (1.02) [−6.09, −2.06]

Diagnosis −2.34 (0.49) −4.82 <0.001*** −2.34 (0.42) [−3.14, −1.49] −4.74 (1.03) −4.61 <0.001*** −4.74 (1.00) [−6.74, −2.84]

ACW-50 −0.55 (0.19) −2.91 0.009** −0.55 (0.25) [−1.06, −0.08] −0.77 (0.40) −1.91 0.103 −0.77 (0.44) [−1.62, 0.08]

AD v controls

Overall model F (6, 62) = 28.78, p < 0.001, R2 = 0.732 F (6, 62) = 14.14, p < 0.001, R2 = 0.578

b(SE) t p b(SE)* 95% CI [L, U]* b(SE) t p b(SE)* 95% CI [L, U]*

Constant 30.98 (2.75) 11.29 <0.001 30.98 (2.79) [25.04, 35.95] 34.73 (5.41) 6.42 <0.001 34.73 (4.36) [26.06, 43.81]

Age −0.07 (0.04) −2.04 0.090 −0.07 (0.04) [−0.14, 0.01] −0.16 (0.07) −2.15 0.072 −0.16 (0.06) [−0.28, −0.04]

Sex 0.72 (0.48) 1.12 0.161 0.72 (0.47) [−0.15, 1.69] 0.55 (0.97) 0.57 0.571 0.52 (0.94) [−1.21, 2.48]

Education 0.20 (0.06) 3.40 0.003** 0.20 (0.06) [0.08, 0.32] 0.14 (0.12) 1.14 0.387 0.13 (0.12) [−0.12, 0.35]

Site −0.87 (0.51) −1.71 0.138 −0.87 (0.48) [−1.77, 0.11] −2.31 (1.03) −2.24 0.072 −2.25 (1.00) [−4.08, −0.18]

Diagnosis −4.98 (0.48) −10.39 0.003** −4.98 (0.46) [−5.97, −4.15] −7.08 (0.97) −7.27 0.006** −6.99 (0.97) [−8.91, −5.08]

ACW-50 −0.27 (0.24) −1.14 0.260 −0.27 (0.20) [−0.71, 0.10] −0.31 (0.48) −0.64 0.571 −0.23 (0.44) [−1.13, 0.60]

Note. All p values are FDR-corrected. *p < 0.05; **p < 0.01; ***p < 0.001. b(SE)* represent bootstrapped coefficient and standard error values and 95% CI [L, U]* represent bootstrapped confidence intervals.
All bootstrapping was performed using 5000 iterations. Abbreviations: L, Lower CI; U, Upper CI.

Table 2: Predictors of cognitive performance.

Social cognitiona Emotion recognitiona

bvFTD v controls

Overall model F (6, 55) = 5.89, p < 0.001, R2 = 0.391 F (6, 55) = 8.30, p < 0.001, R2 = 0.475

b(SE) t p b(SE)* 95% CI [L, U]* b(SE) t p b(SE)* 95% CI [L, U]*

Constant 17.97 (4.70) 3.83 0.002 17.98 (4.32) [9.49, 26.75] 10.89 (2.18) 4.63 <0.001 10.09 (2.51) [5.59, 15.65]

Age 0.11 (0.05) 2.13 0.066 0.11 (0.05) [−0.01, 0.19] 0.06 (0.02) 2.38 0.030* 0.06 (0.03) [−0.01, 0.10]

Sex 0.43 (0.97) 0.45 0.657 0.43 (0.98) [−1.47, 2.39] 0.09 (0.45) 0.20 0.841 0.09 (0.46) [−0.81, 0.98]

Education 0.05 (0.12) 0.45 0.657 0.05 (0.15) [−0.24, 0.34] −0.02 (0.06) −0.42 0.789 −0.02 (0.06) [−0.14, 0.09]

Site −1.34 (1.01) −1.32 0.271 −1.36 (0.94) [−3.07, 0.59] −1.09 (0.47) −2.32 0.033* −1.09 (0.45) [−1.99, −0.22]

Diagnosis −3.03 (1.06) −2.87 0.014* −3.03 (0.88) [−4.79, −1.31] −1.15 (0.49) −2.36 0.033* −1.15 (0.51) [−2.12, −0.12]

ACW-50 −1.38 (0.41) −3.34 0.005** −1.38 (0.52) [−2.50, −0.47] −0.87 (0.19) −4.55 <0.001*** −0.87 (0.22) [−1.30, −0.46]

Overall model F (6, 62) = 8.95, p < 0.001, R2 = 0.464 F (6, 62) = 2.87, p < 0.016, R2 = 0.218

b(SE) t p b(SE)* 95% CI [L, U]* b(SE) t p b(SE)* 95% CI [L, U]*

Constant 22.13 (3.94) 5.61 <0.001 22.13 (4.41) [11.14, 28.59] 9.20 (2.48) 3.71 <0.001 9.20 (2.94) [2.64, 14.21]

Age −0.01 (0.05) −0.22 0.824 −0.01 (0.06) [−0.11, 0.14] 0.01 (0.03) 0.44 0.661 0.01 (0.04) [−0.06, 0.11]

Sex 0.69 (0.68) 1.01 0.632 0.69 (0.66) [−0.58, 1.95] 0.79 (0.43) 1.85 0.207 0.79 (0.42) [−0.03, 1.63]

Education 0.20 (0.08) 2.41 0.057 0.20 (0.06) [0.07, 0.32] 0.05 (0.05) 0.90 0.717 0.05 (0.04) [−0.04, 0.13]

Site −0.30 (0.73) −0.42 0.814 −0.30 (0.66) [−1.59, 1.01] −0.23 (0.46) −0.50 0.717 −0.23 (0.42) [−1.04, 0.60]

Diagnosis −4.23 (0.69) −6.15 0.006** −4.23 (0.67) [−5.59, −2.91] −1.42 (0.43) −3.28 0.012* −1.42 (0.42) [−2.26, −0.62]

ACW-50 0.16 (0.34) 0.48 0.814 0.16 (0.31) [−0.48, 0.73] 0.07 (0.21) 0.36 0.717 0.08 (0.18) [−0.28, 0.45]

Note. All p values are FDR-corrected. *p < 0.05; **p < 0.01; ***p < 0.001. b(SE)* represent bootstrapped coefficient and standard error values and 95% CI [L, U]* represent bootstrapped confidence intervals.
All bootstrapping was performed using 5000 iterations. Abbreviations: L, Lower CI; U, Upper CI. aBased on imputed values to handle missing data, raw regression models reported in Supplementary
Tables S3 and S4 for comparison.

Table 3: Predictors of social cognition and emotion recognition performance.
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Fig. 3: Structural based associations within the allostatic interoceptive network. Voxel-based morphometry showing patterns of atrophy in
bvFTD a) and AD patients b). Reduced structural integrity was associated with longer ACW-50 in AIN core regions in bvFTD patients c) but not
in AD patients d). Reduced structural integrity was associated with longer ACW-50 in AIN extended regions in bvFTD patients e), but not in AD
patients f). All imaging analyses included diagnosis and site as nuisance variables. MNI coordinates are displayed above brain slices. Colour bars
represent t-values. All clusters reported at FDR p < 0.05, corrected for multiple comparisons. Sample size A1-A3: bvFTD n = 24, CN n = 21;
Sample size B1–B3: AD = 27, CN = 24; Abbreviations: R, Right; L, Left. Brain slices displayed in radiological orientation.
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disruptions in AIN occur in both bvFTD and psychiatric
conditions.91,92 Moreover, a substantial overlap in
symptoms exists between bvFTD and psychiatric con-
ditions, leading to diagnostic delays due to common
features.93 Altered intrinsic neural timescales measured
by the ACW are observed in psychiatric conditions
during resting state and self-referential processing.35,89,90

To our knowledge, altered neural timescales related to
interoception have not been investigated in psychiatric
conditions alone or with neurodegenerative diseases,
and represents an opportunity to further understand the
transdiagnostic applications.11 Such investigations will
further refine our growing synergistic understanding of
brain health and disease.

The current study had some limitations. First, direct
comparisons were not made between AD and bvFTD
due to differences in sample characteristics (e.g., de-
mographics). Therefore, it is currently unknown
whether differences in spatiotemporal brain dynamics
of interoception between dementia syndromes exist.
Second, patients received diagnoses based on
www.thelancet.com Vol 113 March, 2025
established clinical criteria only,37,38 without testing for
ATN biomarkers in AD such as the deposition of amy-
loid-β and tau proteins established via Positron Emis-
sion Tomography, CSF, or plasma in AD.94–97 Further,
biomarkers relevant for bvFTD, such as neurofilament
light chain in CSF and synaptic proteins such as Syn-
aptophysin and GAP4398–100 were not available. The
current clinical diagnostic criteria, however, is the cur-
rent gold standard for clinical diagnosis within the
literature and has been used globally to diagnose AD
and bvFTD.53,56,101,102 Moreover, another challenge is the
accessibility and feasibility of these biomarkers in global
settings, together with the current lack of systematic
validation of these biomarkers in diverse populations,103

such as the cohort used in the current paper. Future
works should seek to incorporate clinical and biomarker
criteria to model spatiotemporal brain dynamics to
further our understanding in these disease groups.
Next, we focused on the broadband EEG signal, as no
previous work has investigated INT in people with
bvFTD or AD. While this approach has also been
11
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Region MNI

Side Size X Y Z t FDR p

AIN - core

Insula R 290 48 9 −11 4.31 0.007

Pregenual ACC and superior ACC R 2255 8 45 15 4.25 0.007

Pregenual ACC Bi – 14 39 15 4.18 0.007

Pregenual ACC R – 6 39 26 3.94 0.008

AIN - extended

Angular gyrus R 447 50 −57 24 5.02 0.016

Angular gyrus L 653 −47 −68 26 4.63 0.016

Angular gyrus L – −39 −71 35 3.58 0.019

Angular gyrus L – −47 −80 90 3.47 0.016

Insula R 238 48 9 −11 4.30 0.016

Pregenual ACC and superior ACC R 1490 8 45 15 4.23 0.016

Pregenual ACC Bi – 14 39 15 4.14 0.016

Pregenual ACC R – 6 39 26 3.92 0.016

Hippocampus R 72 41 −29 −15 3.58 0.019

MCC L 389 −12 3 44 3.58 0.019

MCC L – −9 −8 39 3.30 0.022

MCC L – −11 14 44 2.75 0.036

MCC R 213 9 −26 38 3.55 0.016

MCC R – 17 −27 48 2.79 0.035

Pregenual ACC L 500 −8 41 3 3.46 0.019

Superior ACC Bi – −11 36 −9 3.09 0.024

Medial OFC R – 5 38 −8 2.94 0.032

Medial OFC L 95 −8 44 −27 2.95 0.031

Note. All clusters reported at FDR p < 0.05, corrected for multiple comparisons. Abbreviations: ACC, Anterior Cingulate Cortex; MCC, Midcingulate cortex; OFC, Orbitofrontal
cortex; R, right; L, Left; Bi, Bilateral.

Table 4: Structural neural correlates of ACW-50 in bvFTD.
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followed in other clinical populations, such a schizo-
phrenia,35 whether the interoceptive INTs differ across
frequency bands in neurodegeneration warrants future
investigation. Altered brain oscillations are observed in
neurodegeneration, such as in alpha and beta bands in
AD and alpha and gamma bands in bvFTD.104

Emerging work has reported that longer resting-state
INTs were associated with lower alpha peak fre-
quencies in different states of consciousness.70 How
this relationship may function during interoception in
neurodegeneration remains an open avenue for
investigation. Additionally, in the current work we
focused on the time-domain of INT,15 in line with
previous works.35,70 Other measures in the frequency-
domain exist, such as the power law exponent
(PLE),15 which has been related to spectral entropy.105 It
is possible that other measures of INT such as PLE and
measures of spectral entropy are also altered during
neurodegenerative processes and warrants future
investigation. Next, we focused here on cardiac inter-
oceptive inputs. This limitation is not unique to our
study and also influences a majority of interoception
research (for meta-analysis see106). Further research
across multiple interoceptive inputs is required to gain
a deeper understanding of how the brain processes
multiple interoceptive inputs, governed by different
frequencies and timescales under the PAIO-INT
framework. Finally, in our sample, we investigated
structural associations with ACW, using the AAL3
parcellation. Although the AAL3 has been systemati-
cally used in neurodegenerative research101,107–109 and
yields similar results when compared to other parcel-
lation methods,101 it is purely anatomical (i.e., does not
provide functional information). Further research
investigating the ACW with functional networks within
the AIN is needed and represents an opportunity for
future research in this field.

Cognitive neuroscience is moving towards a syner-
gistic understanding of the continuum between brain
health and disease that considers the complex interplay
between the brain, body, and environment.11,12 Our
study provides evidence of altered intrinsic neural
timescales during interoception in neurodegenerative
diseases, with relevance for bvFTD. Moreover, our
findings support that altered intrinsic timescales repre-
sent a plausible neurobiological mechanism underpin-
ning the anatomical and behavioural changes observed
within this syndrome. Our study paves the way for
future research to consider altered intrinsic neural
timescales of interoception as an early marker of dis-
ease, as well as transdiagnostic investigations spanning
neurological and psychiatric conditions.
www.thelancet.com Vol 113 March, 2025
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